• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尾翼板对水陆两栖车水动力性能影响的数值分析

张国卿 冯亿坤 靳昊斌 盖祺芊 徐小军

张国卿, 冯亿坤, 靳昊斌, 等. 尾翼板对水陆两栖车水动力性能影响的数值分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0126
引用本文: 张国卿, 冯亿坤, 靳昊斌, 等. 尾翼板对水陆两栖车水动力性能影响的数值分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0126
ZHANG Guoqing, FENG Yikun, JIN Haobin, GE Qiqian, XU Xiaojun. Numerical Analysis of the Effect of Stern Flap on the Hydrodynamic Performance of Amphibious Vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0126
Citation: ZHANG Guoqing, FENG Yikun, JIN Haobin, GE Qiqian, XU Xiaojun. Numerical Analysis of the Effect of Stern Flap on the Hydrodynamic Performance of Amphibious Vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0126

尾翼板对水陆两栖车水动力性能影响的数值分析

doi: 10.11993/j.issn.2096-3920.2025-0126
基金项目: 国家自然科学基金资助项目(52201387); 湖南省自然科学基金资助项目(2023JJ40669); 国防科技大学科研计划资助项目(ZK22-60).
详细信息
    作者简介:

    张国卿(1996-), 男, 博士研究生, 主要研究方向为水陆两栖车减阻技术和高性能水中推进器设计

    通讯作者:

    冯亿坤(1992-), 男, 助理研究员, 主要研究方向为面向跨域环境的仿生机器人与水陆两栖智能装备总体设计.

  • 中图分类号: TJ630; U661.1

Numerical Analysis of the Effect of Stern Flap on the Hydrodynamic Performance of Amphibious Vehicles

  • 摘要: 为探究尾翼板对水陆两栖车水动力性能的影响机制, 结合静水拖曳试验与数值仿真方法, 基于STAR-CCM+数值计算对比分析了加装尾翼板前后两栖车辆在不同航速下的运动参数、自由液面波形及车身压力分布特性。结果表明: 尾翼板显著改变水陆两栖车水动力特性。运动参数上, 其引入使航行阻力呈先降后增趋势, 在弗劳德数Fr=0.738时减阻率达21.6%; 航行姿态调控作用突出, 纵摇角度峰值差异达63.3% (Fr=0.738), 且有效抑制计算航速域内垂荡运动。尾翼板通过改变车体纵摇角度和垂荡幅值, 显著重构两栖车周围流场波形和车身压力分布特征, 其效果具有速度依赖性。

     

  • 图  1  水陆两栖车几何模型

    Figure  1.  Geometric model of amphibious vehicle

    图  2  计算域

    Figure  2.  Computational domain

    图  3  网格划分

    Figure  3.  Mesh division

    图  4  船模拖曳试验装置

    Figure  4.  Towing test device for ship model

    图  5  试验和数值计算结果比较

    Figure  5.  Comparison of experimental and numerical results

    图  6  航行阻力的试验不确定性分析

    Figure  6.  Uncertainty analysis of navigation resistance test

    图  7  运动参数变化曲线

    Figure  7.  Variation curves of motion parameters

    图  8  加装尾翼板前后自由液面波形对比

    Figure  8.  Comparison of free surface waveforms before and after installing tail plate

    图  9  加装尾翼板前后车身压力对比

    Figure  9.  Comparison of body pressure before and after the installation of tail plate

    表  1  模型主尺度参数

    Table  1.   Parameters of model main scale

    名称符号数值单位
    质量m29.110kg
    总长LOA1.290m
    型宽B0.383m
    型深D0.241m
    吃水d0.122m
    艏吃水dF0.071m
    艉吃水dA0.118m
    型深D0.241m
    排水量0.029m3
    对Y轴质量惯性矩Iyy10.371kgm2
    尾翼板宽度b0.071m
    下载: 导出CSV

    表  2  网格细节与水动力系数(Fr=0.827)

    Table  2.   Mesh details and hydrodynamic coefficientsesh details and hydrodynamic coefficients

    板块分类 网格编号 网格单元数 阻力Rt/N
    网格细节 M01 2 613 217 93.962
    M02 1 531 197 94.076
    M03 864 187 95.322
    水动力系数 Rg 0.091(无量纲)
    PRE 13.12(无量纲)
    δRE/(%) 0.0104(无量纲)
    Cg 22.582(无量纲)
    Ug/(%) 0.459(无量纲)
    下载: 导出CSV
  • [1] SHIHUA J, LIEM R, LI Y. An improved experimental framework of amphibious marine vehicle hull hydrodynamics[J]. IEEE Journal of Oceanic Engineering, 2024, 49(1): 80-91. doi: 10.1109/JOE.2023.3303956
    [2] SUN C L, XU X J, ZOU T A, et al. Investigation on trim control of semi-planning amphibious cargo truck using experimental and numerical approaches[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(3): 1322-1333. doi: 10.1177/09544062211021445
    [3] LEE D, KO S, PARK J, et al. An experimental analysis of active pitch control for an assault amphibious vehicle considering waterjet-hydrofoil interaction effect[J]. Journal of Marine Science and Engineering, 2021, 9(8): 894. doi: 10.3390/jmse9080894
    [4] ZHANG G Q, FENG Y K, XU X J. Effect of waterjet propulsion on the hydrodynamic performance of caterpillar track amphibious vehicle[J]. Ocean Engineering, 2024, 309: 118505. doi: 10.1016/j.oceaneng.2024.118505
    [5] SONG K W, GUO C Y, WANG C, et al. Numerical analysis of the effects of stern flaps on ship resistance and propulsion performance[J]. Ocean Engineering, 2019, 193: 106621(1-19).
    [6] 刘健, 周广礼, 彭嘉澍, 等. 双壳体混合驱动水下滑翔机结构原理及水动力性能研究[J]. 水下无人系统学报, 2024, 32(1): 25-31. doi: 10.11993/j.issn.2096-3920.2023-0150

    LIU J, ZHOU G L, PENG J S, et al. Research on structural principle and hydrodynamic performance of double-hull hybrid powered underwater glider[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 25-31. doi: 10.11993/j.issn.2096-3920.2023-0150
    [7] WANG X Z, LIU L W, ZHANG Z G, et al. Numerical study of the stern flap effect on catamaran’seakeeping characteristic in regular head waves[J]. Ocean Engineering, 2020(206): 107172.
    [8] 潘柏衡, 高霄鹏. 尾插板对滑行艇阻力及纵向稳定性影响试验分析[J]. 船海工程, 2018, 47: 26-28. doi: 10.3963/j.issn.1671-7953.2018.01.006

    PAN B H, GAO X P. Experimental study on tail-board influence upon resistance and stability of planing craft[J]. Ship & Ocean Engineering, 2018, 47: 26-28. doi: 10.3963/j.issn.1671-7953.2018.01.006
    [9] 彭锟, 刘影. 尾翼板对轮式两栖车航行阻力特性影响的研究[J]. 车辆与动力技术, 2014, 4: 15-19.

    PENG K, LIU Y. Influence of empennage on resistance characteristics of a wheeled amphibious vehicle[J]. Vehicle & Power Technology, 2014, 4: 15-19.
    [10] GUAN G, TIAN Y, LIANG G P. Multi-objective optimization of a fishery administration vessel's stern flap design based on surrogate model[J]. Ocean Engineering, 2025, 337: 121912. doi: 10.1016/j.oceaneng.2025.121912
    [11] 孙承亮, 徐小军, 唐源江, 等. 分段履带式水陆两栖车减阻增速试验及数值仿真[J]. 国防科技大学学报, 2022, 44(5): 201-208. doi: 10.11887/j.cn.202205022

    SUN C L, XU X J, TANG Y J, et al. Experimental and numerical simulation of reducing resistance an increasing speed for a segmented-track amphibious vehicle[J]. Journal of National University of Defense Technology, 2022, 44(5): 201-208. doi: 10.11887/j.cn.202205022
    [12] 王丽丽, 张家旭, 刘涛, 等. 压浪板对两栖车辆水动力特性影响的数值分析[J]. 系统仿真技术, 2018, 14(2): 113-117. doi: 10.3969/j.issn.1673-1964.2018.02.007

    WANG L L, ZHANG J X, LIU T, et al. Numerical analysis on effect of wave suppression plate on hydrodynamical characteristics of amphibious vehicle[J]. System Simulation Technology, 2018, 14(2): 113-117. doi: 10.3969/j.issn.1673-1964.2018.02.007
    [13] SONG K W, GUO C Y, GONG J, et al. Influence of interceptors, stern flaps, and their combinations on the hydrodynamic performance of a deep-vee ship[J]. Ocean Engineering, 2018(170): 306-320. doi: 10.1016/j.oceaneng.2018.10.048
    [14] 郑义, 董文才, 姚朝帮, 等. 排水型深V船系列模型尾板减阻试验研究[J]. 上海交通大学学报, 2011, 45(4): 475-480. doi: 10.16183/j.cnki.jsjtu.2011.04.007

    ZHENG Y, DONG W C, YAO C B, et al. Experimental study on resistance reduction of displacement type deep-V hull model using stern flap[J]. Journal of Shanghai Jiao tong University, 2011, 45(4): 475-480. doi: 10.16183/j.cnki.jsjtu.2011.04.007
    [15] ZHANG G Q, WANG J C, FENG Y K, et al. Experimental and numerical investigation on the hydrodynamic performance of an amphibious vehicle under the interaction of traveling mechanism mudguard and waterjet propulsor duct[J]. Ocean Engineering, 2025(340): 122426. doi: 10.1016/j.oceaneng.2025.122426
    [16] SUN C L, XU X J, WANG L H, et al. Research on hydrodynamic performance of a blended wheel-track amphibious truck using experimental and simulation approaches[J]. Ocean Engineering, 2021(228): 108969. doi: 10.1016/j.oceaneng.2021.108969
    [17] BI X S, SHEN H L, ZHOU J, et al. Numerical analysis of the influence of fixed hydrofoil installation position on seakeeping of the planing craft[J]. Applied Ocean Research, 2019(90): 101863. doi: 10.1016/j.apor.2019.101863
    [18] FENG Y K, ZHANG G Q, WANG J C, et al. Numerical investigation of the hydrodynamic characteristics of a light high-speed amphibious vehicle in still water under oblique inflow conditions[J]. Physics of Fluids, 2025, 37(4): 047150 doi: 10.1063/5.0271256
    [19] 冯亿坤. 尾鳍与胸鳍联合推进的仿生鱼自主游动数值模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
    [20] 毕明琪. 多船体编队航行水动力性能数值与试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
  • 加载中
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-11
  • 修回日期:  2025-10-01
  • 录用日期:  2025-10-09
  • 网络出版日期:  2026-01-13
图(9) / 表(2)

目录

    /

    返回文章
    返回
    服务号
    订阅号