Deconvolution MIMO Sonar High Resolution Imaging Method Based on Acoustic Homing Platform
-
摘要: 针对水下航行器对目标期望导引部位成像的需求, 首次尝试将MIMO声呐成像应用于水下航行器的声自导平台, 旨在有限孔径条件下提高水下航行器声自导平台主动成像的分辨率, 获取清晰图像, 以引导水下航行器判断目标期望部位。结合声自导平台对MIMO声呐收发基阵进行讨论, 并通过仿真证明了MIMO声呐可等效为更大孔径的虚拟SIMO声呐, 兼具高于传统SIMO声呐的角度分辨率与小体积的优势。使用解卷积处理可以有效提高MIMO声呐的角度分辨率和距离分辨率, 同时显著抑制角度维和距离维旁瓣。文章创新点在于根据声自导平台设计收发阵型和Costas编码发射信号, 对目标散射回波进行处理, 验证了解卷积MIMO声呐高分辨成像方法在声自导平台上的可行性, 为MIMO声呐高分辨成像提供了新的技术参考和实现路径。Abstract: In response to the demand for imaging of the expected guidance part of the target by underwater vehicle, this paper attempts for the first time to apply MIMO sonar imaging to underwater vehicle acoustic homing, aiming to improve the resolution of underwater vehicle acoustic homing active imaging under limited aperture, obtain clear images, and guide underwater vehicle to judge the expected part of the target. This paper discusses the MIMO sonar transceiver array using the acoustic self-guided platform, and demonstrates through simulations that the MIMO sonar can be equivalent to a virtual SIMO sonar with a larger aperture, offering higher angular resolution than conventional SIMO sonar as well as a compact size. By using deconvolution processing, the angular and range resolution of the MIMO sonar can be effectively improved, while effectively suppressing the sidelobes in both angular and range dimensions. The innovation of this paper lies in designing the transmitting and receiving arrays based on an acoustic self-guided platform, developing Costas-coded signals, processing target scattering echoes, and validating the feasibility of the deconvolution MIMO sonar high-resolution imaging method on the acoustic self-guided platform, providing a new reference and method for high resolution imaging of MIMO sonar.
-
Key words:
- Acoustic homing /
- MIMO sonar /
- SIMO sonar /
- Deconvolution /
- Resolution
-
表 1 22位Costas编码
Table 1. 22-bit Costas code
发射信号 编码序列 信号1 1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9,
22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14信号2 1, 14, 12, 7, 6, 15, 3, 19, 13, 21, 18,
22, 9, 11, 16, 17, 8, 20, 4, 10, 2, 5表 2 散射点坐标
Table 2. Coordinates of scattered points
目标 角度/(°) 距离/m 目标 角度/(°) 距离/m 散射点1 −25 99 散射点15 0 102 散射点2 −20 98 散射点16 5 98 散射点3 −20 100 散射点17 5 100 散射点4 −15 98 散射点18 5 102 散射点5 −15 100 散射点19 10 98 散射点6 −10 98 散射点20 10 100 散射点7 −10 100 散射点21 10 101 散射点8 −10 101 散射点22 10 102 散射点9 −10 102 散射点23 15 98 散射点10 −5 98 散射点24 15 100 散射点11 −5 100 散射点25 20 98 散射点12 −5 102 散射点26 20 100 散射点13 0 98 散射点27 25 99 散射点14 0 100 表 3 角度维半功率波束宽度和旁瓣级对比
Table 3. Comparison of half-power beamwidth and sidelobe level in angular dimension
成像方法 半功率波束宽/(°) 旁瓣级/dB 1发26收SIMO成像 4.07 −13.25 1发50收SIMO成像 2.03 −13.25 2发25收MIMO成像 2.03 −13.25 解卷积MIMO成像 0.43 — 表 4 角度维的半功率波束宽度和旁瓣级对比
Table 4. Comparison of half-power beamwidth and sidelobe level in angular dimension
成像方法 半功率波束宽/rad 旁瓣级/dB 1发26收SIMO成像 0.10 -4.60 2发25收MIMO成像 0.08 -5.46 解卷积MIMO成像 0.03 -8.33 -
[1] 杨益新, 韩一娜, 赵瑞琴, 等. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26(5): 369-386,367. doi: 10.11993/j.issn.2096-3920.2018.05.001YANG Y X, HAN Y N, ZHAO R Q, et al. Ocean acoustic target detection technologies: A review[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 369-386,367. doi: 10.11993/j.issn.2096-3920.2018.05.001 [2] 卢迎春, 桑恩方. 基于主动声纳的水下目标特征提取技术综述[J]. 哈尔滨工程大学学报, 1997(6): 45-46.LU Y C, SANG E F. Feature extraction techniques of underwater objects based on active sonars—An overview[J]. Journal of Harbin Engineering University, 1997(6): 45-46. [3] LI J, STOICA P. MIMO radar with collocated antennas[J]. Signal Process Magazine, 2007, 24(5): 106-114. doi: 10.1109/MSP.2007.904812 [4] 刘雄厚. 密布式MIMO声呐成像技术研究[D]. 西安: 西北工业大学, 2014. [5] 李志舜. 水下航行器自导信号与信息处理[M]. 西安: 西北工业大学出版社, 2004. [6] 李宇, 王彪, 黄海宁, 等. MIMO探测声纳的研究[C]// 中国声学学会2007年青年学术会议论文集(下). 武汉, 中国: 中国声学学会, 2007. [7] 王怀军, MIMO雷达成像算法研究[D]. 长沙: 国防科技大学, 2010: 22-29. [8] LIU X H, SUN C, YI F, et al. Underwater three-dimensional imaging using narrowband MIMO array[J]. Science China physics mechanics & astronomy, 2013, 56(7): 1346-1354. doi: 10.1007/s11433-013-5117-2 [9] 伍镜蓉, 刘雄厚, 樊宽, 等. 尺寸约束下圆环阵MIMO声呐阵型设计和波束优化[J]. 水下无人系统学报, 2018, 26(5): 415-420. doi: 10.11993/j.issn.2096-3920.2018.05.006WU J R, LIU X H, FAN K, et al. Array Layout Design and Beampattern Optimization for Circular-Array MIMO Sonar with Limited Physical Size[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 415-420. doi: 10.11993/j.issn.2096-3920.2018.05.006 [10] 孙超. 水下多传感器阵列信号处理[M]. 西安: 西北工业大学出版社, 2007. [11] LIU X H, WEI T, SUN C, et al. High-resolution two-dimensional imaging using MIMO sonar with limited physical size[J]. Applied Acoustics, 2021, 182: 108280. doi: 10.1016/j.apacoust.2021.108280 [12] 朱坤安, 杨云川, 石磊, 等. 线性调频信号在潜艇目标回波中的特性研究[C]// 中国造船工程学会电子技术学术委员会2017年装备技术发展论坛论文集. 西安: 中国造船工程学会电子技术学术委员会, 2017: 291-294. [13] 勇俊. 基于二维成像声纳的水下运动目标定位技术研究[D]. 黑龙江: 哈尔滨工程大学, 2012. [14] KIRKEBO J E, AUSTENG A. Sparse cylindrical sonar arrays[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 224-231. doi: 10.1109/JOE.2008.923553 [15] 刘罡, 李永胜, 石磊, 等. 基于Costas-DPSK编码的水下探测通信一体化波形[J]. 舰船科学技术, 2024, 46(16): 125-129. doi: 10.3404/j.issn.1672-7649.2024.16.020LIU G, LI Y S, SHI L, et al. A waveform for underwater detection and communication integration based on Costas-DPSK[J]. Ship Science and Technology, 2024, 46(16): 125-129. doi: 10.3404/j.issn.1672-7649.2024.16.020 [16] 邹谋炎. 反卷积和信号复原[M]. 北京: 国防工业出版社, 2001. [17] GUO W, PIAO S C, YANG T C, et al. High-resolution power spectral estimation method using deconvolution[J]. Journal of oceanic engineering, 2020, 45(2): 489-499. doi: 10.1109/JOE.2018.2882275 [18] 王朋, 迟骋, 纪永强, 等. 二维解卷积波束形成水下高分辨三维声成像[J]. 声学学报, 2019, 44(4): 613-625.WANG P, CHI C, JI Y Q, et al. Two-dimensional deconvolved beamforming for high-resolution underwater three-dimensional acoustical imaging[J]. Acta Acustica, 2019, 44(4): 613-625. [19] LIU X H, FAN J H, SUN C, et al. Deconvolving range profile for sonar imaging using stepped-frequency LFM pulses[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 954-958. doi: 10.1109/LGRS.2020.2991418 [20] LIU X H, FAN J H, SUN C, et al. High-resolution and low-sidelobe forward-look sonar imaging using deconvolution[J]. Applied Acoustics, 2021, 178: 107986. doi: 10.1016/j.apacoust.2021.107986 -

下载: