• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向辅助多AUV作业的USV路径规划研究

米彦龙 杨惠珍 郭天阳

米彦龙, 杨惠珍, 郭天阳. 面向辅助多AUV作业的USV路径规划研究[J]. 水下无人系统学报, 2026, 34(1): 1-10 doi: 10.11993/j.issn.2096-3920.2025-0113
引用本文: 米彦龙, 杨惠珍, 郭天阳. 面向辅助多AUV作业的USV路径规划研究[J]. 水下无人系统学报, 2026, 34(1): 1-10 doi: 10.11993/j.issn.2096-3920.2025-0113
MI Yanlong, YANG Huizhen, GUO Tianyang. Research on USV path planning for assisted multi-AUVs navigation[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0113
Citation: MI Yanlong, YANG Huizhen, GUO Tianyang. Research on USV path planning for assisted multi-AUVs navigation[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0113

面向辅助多AUV作业的USV路径规划研究

doi: 10.11993/j.issn.2096-3920.2025-0113
基金项目: 水下信息与控制全国重点实验室基金项目资助(2024-CXPT-GF-JJ-036-06).
详细信息
    作者简介:

    米彦龙(2000-), 男, 研究生在读, 主要研究方向为水下航行器路径规划

    通讯作者:

    杨惠珍(1974-), 女, 博士, 研究员, 主要研究方向为水下航行器路径规划.

  • 中图分类号: TJ630; U663

Research on USV path planning for assisted multi-AUVs navigation

  • 摘要: 面向无人水面艇(USV)辅助多自主水下航行器(AUV)作业应用背景, 提出一种基于超短基线定位系统(USBL)的USV-AUV多目标协同路径规划方法。通过分析USBL工作原理, 结合海洋水声信号传播特性, 由USBL信号的有效区、射线声学理论定义的声线传播边界及根据声呐方程计算出的最大作用距离共同构成协同作业的稳定通信范围。在确保USV-AUV保持在水声通信有效范围内的同时, 进一步优化路径长度、路径平滑度和USV-AUV的通信性能, 建立了USV-AUV协同路径规划的多目标优化模型, 利用改进遗传算法求解, 探究通信距离、AUV作业深度等参数对USV规划路径影响的仿真实验, 结果表明, 所提方法在满足USBL通信约束的前提下, 能够有效提升USV与AUV协同工作的稳定性, 为多AUV执行复杂海洋任务提供可靠保障。

     

  • 图  1  工作场景示意图

    Figure  1.  Schematic diagram of the work scene

    图  2  USBL定位原理图

    Figure  2.  Schematic diagram of USBL positioning principle

    图  3  USV/AUV盲区相对位置图

    Figure  3.  Relative position of USV/AUV blind spots

    图  4  二维平面示意图

    Figure  4.  2D Plane Schematic

    图  5  GA-PSO-TLBO算法流程图

    Figure  5.  GA-PSO-TLBO algorithm flowchart

    图  6  不同算法在仿真场景1中的规划结果

    Figure  6.  The planning results of different algorithms in simulation scenario 1

    图  7  不同算法在工作场景2中的规划结果

    Figure  7.  The planning results of different algorithms in work scenario 2

    图  8  权重系数变化对路径规划效果的影响

    Figure  8.  The impact of changes in weight coefficients on the effectiveness of path planning.

    表  1  不同高度差的路径规划结果

    Table  1.   Path planning results under different height differences

    USV-AUV
    高度差/m
    GA GA-PSO-TLBO
    路径
    长度/m
    通信性
    能评估/%
    USV
    最大转
    角/(°)
    路径
    长度/m
    通信性
    能评估/%
    USV
    最大转
    角/(°)
    100 1052 97.33 40.16 1052 97.33 40.40
    150 1279 96.00 75.37 1130 96.67 75.20
    200 1280 95.34 92.56 1203 96.33 66.07
    250 1311 95.33 93.81 1211 95.50 103.60
    300 1562 94.10 107.84 1431 94.40 103.53
    下载: 导出CSV

    表  2  不同稳定通信距离的路径规划结果

    Table  2.   Path planning results for different stable communication distances

    稳定通
    信距离/m
    GA GA-PSO-TLBO
    路径
    长度/m
    通信
    性能
    评估/%
    USV
    最大
    转角/(°)
    路径
    长度/m
    通信
    性能
    评估/100%
    USV
    最大
    转角/(°)
    100 1050 79.74 40.24 1050 79.74 40.70
    150 1280 82.98 72.79 1170 84.50 72.77
    200 1280 89.29 93.44 1250 90.33 84.35
    250 1310 93.13 90.98 1200 95.50 100.80
    300 1660 94.99 111.10 1474 97.00 106.77
    下载: 导出CSV
  • [1] BERTRAM V. Unmanned surface vehicles-a survey[J]. Skibsteknisk Selskab, 2008, 1: 1-14.
    [2] 焦慧峰, 叶琛, 王文初, 等. 基于移动长基线和导航误差修正的USV/UUV协同导航算法[J]. 水下无人系统学报, 2024, 32(5): 864-873. doi: 10.11993/j.issn.2096-3920.2024-0005

    JIAO H F, YE C, WANG W C, et al. USV/UUV cooperative navigation algorithm based on moving long baseline and navigation error correction[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 864-873. doi: 10.11993/j.issn.2096-3920.2024-0005
    [3] 冯业, 杜民. 基于无人机平台的水下通信中继技术研究[J]. 电脑与信息技术, 2025, 33(2): 61-63,90. doi: 10.3969/j.issn.1005-1228.2025.02.013

    FENG Y, DU M. Research on underwater communication relay technology based on UAV platform[J]. Computer and Information Technology, 2025, 33(2): 61-63,90. doi: 10.3969/j.issn.1005-1228.2025.02.013
    [4] YUAN X, WANG J, TONG C, et al. Integrated path planning for AUV communication efficiency and obstacle avoidance based on ant colony optimization and three-dimensional dynamic window algorithm[J]. Applied Ocean Research, 2025, 156: 104465. doi: 10.1016/j.apor.2025.104465
    [5] 王洋, 沈同圣, 汪涛, 等. 融合多特征的水声通信信号调制识别方法[J]. 声学学报, 2025, 50(5): 1338-1348. doi: 10.12395/0371-0025.2023246

    WANG Y, SHEN T S, WANG T, et al. Modulation classification method based on multi-feature fusion for underwater acoustic communication signals[J]. Acta Acustica, 2025, 50(5): 1338-1348. doi: 10.12395/0371-0025.2023246
    [6] FAN Y, QIAO S, WANG G, et al. A modified adaptive Kalman filtering method for maneuvering target tracking of unmanned surface vehicles[J]. Ocean Engineering, 2022, 266: 112890. doi: 10.1016/j.oceaneng.2022.112890
    [7] 谢志华, 蒋丞, 吴俊超, 等. 水下目标多平台协同定位和跟踪方法[J]. 声学学报, 2021, 46(6): 1028-1038.

    XIE Z H, JIANG C, WU J C, et al. Method of multi-platform cooperative localization and tracking for underwater targets[J]. Acta Acustica, 2021, 46(6): 1028-1038.
    [8] SANG H, YOU Y, SUN X, et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021, 223: 108709. doi: 10.1016/j.oceaneng.2021.108709
    [9] GUO X, JI M, ZHAO Z, et al. Global path planning and multi-objective path control for unmanned surface vehicle based on modified particle swarm optimization(PSO) algorithm[J]. Ocean Engineering, 2020, 216: 107693. doi: 10.1016/j.oceaneng.2020.107693
    [10] XIN J, ZHONG J, YANG F, et al. An improved genetic algorithm for path-planning of unmanned surface vehicle[J]. Sensors, 2019, 19(11): 2640. doi: 10.3390/s19112640
    [11] 孙硕, 杨少龙, 向先波, 等. 基于动态领域势场法的船舶避碰路径规划[J]. 水下无人系统学报, 2023, 31(5): 679-686. doi: 10.11993/j.issn.2096-3920.2022-0058

    SUN S, YANG S L, XIANG X B, et al. Ship collision avoidance path planning based on dynamic domain potential field[J]. Journal of Unmanned Underwater Systems, 2023, 31(5): 679-686. doi: 10.11993/j.issn.2096-3920.2022-0058
    [12] 宋俊辉, 刘宇庭, 郭世杰. 动态环境下AIP-RRT*与DGF-APF融合的机器人路径规划[J]. 仪器仪表学报, 2025, 46(3): 51-64. doi: 10.19650/j.cnki.cjsi.J2413268

    SONG J H, LIU Y T, GUO S J. Robot path planning by fusion of AIP-RRT* and DGF-APF in dynamic environments[J]. Chinese Journal of Scientific Instrument, 2025, 46(3): 51-64. doi: 10.19650/j.cnki.cjsi.J2413268
    [13] 庞舟岐, 郝程鹏, 林晓波, 等. 基于深度强化学习的水下无人航行器高速目标捕获路径规划[J]. 控制理论与应用, 2025, 42(10): 1968-1980. doi: 10.7641/CTA.2025.40272

    PANG Z Q, HAO C P, LIN X B, et al. High speed target acquisition path planning for underwater unmanned vehicles based on deep reinforcement learning[J]. Control Theory & Applications, 2025, 42(10): 1968-1980. doi: 10.7641/CTA.2025.40272
    [14] XUE J, HE M, CHEN J, et al. Improved DDPG based on enhancing decision evaluation for path planning in high-density environments[J]. Expert Systems with Applications, 2025: 127378.
    [15] VERMA D, VERMA H, TIWARI P K. A hybrid approach for MRI brain image segmentation using KIFECM-IPSO algorithm[J]. Expert Systems with Applications, 2025, 268: 126239. doi: 10.1016/j.eswa.2024.126239
    [16] LIU N, HU Z, WEI M, et al. Improved A* algorithm incorporating RRT* thought: A path planning algorithm for AGV in digitalised workshops[J]. Computers & Operations Research, 2025: 106993.
    [17] XU B, ZHU H, GUO Y. A robust iterative algorithm for SINS/USBL integrated navigation based on dual hydrophone differential model[J]. Measurement, 2025, 242: 115854. doi: 10.1016/j.measurement.2024.115854
    [18] 杨士莪. 水声传播原理[M]. 哈尔滨工程大学出版社, 2007.
    [19] LI X, ZHANG W. Application of Snell's law in reflection raytracing using the multistage fast marching method[J]. Earthquake Research Advances, 2021, 1(1): 100009. doi: 10.1016/j.eqrea.2021.100009
    [20] LIU Y, CHEN Y, ZHANG Y, et al. Research on reconstruction of the global sound speed profile combining partial underwater prior information[J]. Journal of Sea Research, 2024, 200: 102516. doi: 10.1016/j.seares.2024.102516
    [21] SUN T, JIN J, YANG Y, et al. A multi-order Fractional Fourier domain feature union method for active sonar target classification[J]. Applied Acoustics, 2023, 205: 109257. doi: 10.1016/j.apacoust.2023.109257
    [22] AN L, HUANG X, YANG P, et al. Adaptive bézier curve-based path following control for autonomous driving robots[J]. Robotics and Autonomous Systems, 2025, 189: 104969. doi: 10.1016/j.robot.2025.104969
    [23] 卢俊, 张群飞, 史文涛. 水下探测通信一体化关键技术分析[J]. 水下无人系统学报, 2018, 26(5): 470-479. doi: 10.11993/j.issn.2096-3920.2018.05.015

    LU J, ZHANG Q F, SHI W T. Analysis on the key technology of integrated underwater detection and communication[J]. Journal of Unmanned Underwater Systems, 2018, 26(5): 470-479. doi: 10.11993/j.issn.2096-3920.2018.05.015
    [24] YUN Y, GEN M, ERDENE T N. Applying GA-PSO-TLBO approach to engineering optimization problems[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 552-571. doi: 10.3934/mbe.2023025
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-25
  • 修回日期:  2025-09-14
  • 录用日期:  2025-09-26
  • 网络出版日期:  2026-01-19
图(8) / 表(2)

目录

    /

    返回文章
    返回
    服务号
    订阅号