• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进Smith预估器结合HCOPSO算法的无人船航向控制

李至琦 刘兰军 陈家林

李至琦, 刘兰军, 陈家林. 改进Smith预估器结合HCOPSO算法的无人船航向控制[J]. 水下无人系统学报, 2025, 33(6): 1-13 doi: 10.11993/j.issn.2096-3920.2025-0104
引用本文: 李至琦, 刘兰军, 陈家林. 改进Smith预估器结合HCOPSO算法的无人船航向控制[J]. 水下无人系统学报, 2025, 33(6): 1-13 doi: 10.11993/j.issn.2096-3920.2025-0104
LI Zhiqi, LIU Lanjun, CHEN Jialin. Optimized Smith Predictor Combined with HCOPSO Algorithm for Unman Surface Vehicle Heading Control[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0104
Citation: LI Zhiqi, LIU Lanjun, CHEN Jialin. Optimized Smith Predictor Combined with HCOPSO Algorithm for Unman Surface Vehicle Heading Control[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0104

改进Smith预估器结合HCOPSO算法的无人船航向控制

doi: 10.11993/j.issn.2096-3920.2025-0104
基金项目: 国家重点研发计划项目资助(2017YFC****203).
详细信息
    作者简介:

    李至琦(2001-), 男, 在读硕士, 主要研究方向为嵌入式技术与智能仪器、无人系统控制

    通讯作者:

    刘兰军(1979-), 男, 博士, 副教授, 主要研究方向为嵌入式技术与智能仪器、海洋探测与观测技术、水声通信与网络技术.

  • 中图分类号: U674.94; TJ63

Optimized Smith Predictor Combined with HCOPSO Algorithm for Unman Surface Vehicle Heading Control

  • 摘要: 高速无人船(USV)航向控制中, 同时存在前向通道与反馈回路的时滞环节, 并且具有较大的延迟/动态时间比, 显著降低航向控制性能。传统Smith预估器能有效补偿前向通道时滞, 但未考虑反馈回路的时滞。为此, 文中将反馈回路时滞纳入Smith预估器设计, 构建包含双向时滞的预测模型, 同时补偿前向通道与反馈回路的时滞, 减少双向时滞的系统相位裕度侵蚀。进一步, 引入混合均值中心反向学习粒子群优化(HCOPSO)算法进行比例-积分-微分(PID)控制器参数寻优整定, 该算法在迭代前期利用均值中心反向学习策略扩大搜索范围, 后期通过自适应压缩因子实现精细寻优, 兼具全局探索与局部开发的优势, 有效解决寻优过程的局部最优解问题。基于无人船航向模型进行了仿真测试, 结果表明, 改进Smith预估PID控制器相较于常规PID控制器、传统Smith预估PID控制器, 使系统的超调量和调节时间均得到了改善, 稳态误差小于0.1°; 并且当改进Smith预估补偿模型存在误差时, 系统依然能够保持良好的动态性能与稳态精度。同时, 针对改进Smith预估PID控制器, 进一步对比分析了HCOPSO算法与粒子群优化算法(PSO)、遗传算法(GA)、鲸鱼优化算法(WOA)的参数寻优, 对比分析了环境干扰下HCOPSO算法与其他算法的航向控制性能。结果表明, HCOPSO算法获得的时间加权绝对误差积分(ITAE)指标较PSO、GA、WOA等算法分别降低了55.38%、22.47%和24.63%, 并表现出较强的扰动抑制能力与航向保持能力, 验证了其有效性。

     

  • 图  1  USV闭环航向控制系统

    Figure  1.  Closed-loop heading control system of USV

    图  2  闭环航向控制系统

    Figure  2.  Closed-loop heading control system

    图  3  引入传统Smith预估器的闭环航向控制系统

    Figure  3.  Closed-loop heading control system with traditional Smith predictor

    图  4  引入传统Smith预估器的等效闭环航向控制系统

    Figure  4.  Equivalent closed-loop heading control system with traditional Smith predictor

    图  5  引入改进Smith预估器的闭环航向控制系统

    Figure  5.  Closed-loop heading control system with optimized Smith predictor

    图  6  引入改进Smith预估器的闭环航向控制等效系统

    Figure  6.  Equivalent closed-loop heading control system with optimized Smith predictor

    图  7  PID控制框图

    Figure  7.  The Control Block Diagram of PID

    图  8  HCOPSO算法优化控制器参数的过程

    Figure  8.  Process of optimizing parameters of controller using HCOPSO algorithm

    图  9  改进Smith预估PID控制器的USV闭环系统仿真模型

    Figure  9.  Simulation Model of Closed-loop System with Optimized Smith Predictor based PID Controller of USV

    图  10  单阶跃输入下的改进Smith控制对航向角控制效果的对比验证

    Figure  10.  Comparison and verification of the control effect of optimized smith control on heading angle under single step input

    图  11  不同阶跃输入下的改进Smith控制对航向角控制效果的对比验证

    Figure  11.  Comparison and verification of the control effect of optimized smith control on heading angle under different step input

    图  12  阶跃输入下不同系统的舵角输出曲线对比图

    Figure  12.  Comparison of Rudder Angle Output Curves of Different Systems under Step Input

    图  13  补偿模型存在偏差时系统的航向角曲线图

    Figure  13.  Heading angle curves of the system with deviation in the compensation model

    图  14  不同算法的适应度收敛曲线

    Figure  14.  Fitness convergence curves of different algorithms

    图  15  采用不同控制方法的USV航向角输出对比

    Figure  15.  The Comparison of the Heading Angle Output of the USV with Different Control Methods

    图  16  不同干扰下采用不同算法的USV航向角与舵角输出对比

    Figure  16.  comparison of the heading angle output and rudder angle output of the usv with different control methods under different prescribed disturbance

    表  1  HCOPSO算法的伪代码

    Table  1.   Pseudocode of the hybrid mean center reverse learning particle swarm optimization algorithm

    算法: 混合均值中心反向学习粒子群优化(HCOPSO)算法
    输入: 种群数N, 维度D, 惯性权重w, 学习因子c1, c2, 最大迭代Max_iter, 最大评估Max_eval, 边界[xmin, xmax]
    输出: 全局最优位置g及其适应度f(g)
    1. 随机初始化粒子位置x_i和速度v_i, i=1 to N; p_i=x_i
    2. 计算f(x_i), 若f(x_i)更优则更新个体最优p_i; 设置全局最优g
    3. for iter = 1 to Max_iter do
    4. for i = 1 to N do
    5.  for d = 1 to D do
    6.   v_i[d] = w * v_i[d] + c1 * r1 * (p_i[d] − x_i[d]) + c2 * r2 * (g[d] − x_i[d])
    7.   x_i[d] = x_i[d] + v_i[d]
    8.   if f(x_i)更优于f(p_i) then p_i=x_i
    9.   if f(x_i)更优于f(g) then g=x_i
    10.  end for
    11. end for
    12. 计算x_MC, x_PMC, x_HMC(依次由式(11), 式(12), 式(13)可得)
    13. 计算x_OBL_HMC(由式(14)可得)
    14. if f(x_OBL_HMC)更优于f(g) then g=x_OBL_HMC
    15. if eval ≥ Max_eval then break
    16. end for
    17. return g, f(g)
    下载: 导出CSV

    表  2  基于改进Smith预估PID控制器的控制系统框架下不同算法最佳适应度值

    Table  2.   Optimal fitness values of different algorithms under the control system framework of optimized smith predictor PID controller

    智能优化
    算法
    $ {K_{\text{P}}} $$ {K_{\text{I}}} $$ {K_{\text{D}}} $迭代次数最佳适应度值
    PSO3.3405.0029324.4
    WOA6.61015.1132322.0
    HCOPSO4.13010.2139321.6
    GA3.770.000 28.7548323.0
    下载: 导出CSV

    表  3  不同算法整定的PID参数值和动态响应指标

    Table  3.   The PID Parameter Values and Dynamic Response Indices Tuned by Different GAAlgorithms

    智能优化
    算法
    超调量/%调节时间/sITAE峰值时间/s
    PSO46.371.48 34143.0
    WOA32.057.94 80142.0
    HCOPSO20.452.03 72241.0
    GA31.458.14 93842.0
    下载: 导出CSV
  • [1] TOUZOUT W, BENMOUSSA Y, BENAZZOUZ D, et al. Unmanned surface vehicle energy consumption modelling under various realistic disturbances integrated into simulation environment[J]. Ocean Engineering, 2021, 222: 108560. doi: 10.1016/j.oceaneng.2020.108560
    [2] 祝川, 卢俊, 吴翔. 无人艇直驱式电液伺服舵机系统建模与仿真[J]. 舰船科学技术, 2019, 41(23): 87-92.

    ZHU C, LU J, WU X. Modeling and simulation of direct-drive electro-hydraulic servo steering-gear system of USV[J]. Ship Science and Technology, 2019, 41(23): 87-92.
    [3] GE Y, ZHONG L, QIANG Z J. Research on USV heading control method based on Kalman filter sliding mode control[C]//Proceedings of the 32nd 2020 Chinese Control and Decision Conference. Hefei, China: IEEE, 2020: 1547-1551.
    [4] 周嘉俊, 吴萌岭, 刘宇康, 等. 基于改进史密斯预估器的列车制动减速度控制研究[J]. 同济大学学报(自然科学版), 2020, 48(11): 1657-1667.

    ZHOU J J, WU M L, LIU Y K, et al. Train braking deceleration control based on improved smith estimator[J]. Journal of Tongji University(Natural Science), 2020, 48(11): 1657-1667.
    [5] Al-Dhaifallah M. Fractional order and smith predictor structure—performance analysis for pressure control process[C]//Proceedings of the 2023 20th International Multi-Conference on Systems, Signals & Devices(SSD). Mahdia, Tunisia: IEEE, 2023: 700-704.
    [6] DING Q H, FANG B. Research on the application of improved smith predictor on control systems which contain time-delay in feedback path[C]//Proceedings of the 32nd Chinese Control Conference. Xi’an, China: IEEE, 2017: 309-312.
    [7] MEHALLEL A, FELIU-BATLLE V. Reducing the impacts of withdrawals on the water distribution in main irrigation canals based on a modified smith predictor control scheme[J]. Water, 2025, 17(3): 373.
    [8] 王健, 祖广浩. 磁流变半主动悬架的史密斯预估-LQG时滞补偿控制方法[J]. 重庆理工大学学报(自然科学), 2017, 31(8): 65-72,80.

    WANG J, ZU G H. Smith predictor-LQG control for time delay compensation of magneto-rheological semi-active suspension[J]. Journal of Chongqing University of Technology(Natural Science), 2017, 31(8): 65-72,80.
    [9] INYANG I J, WHIDBORNE J F. Applying a modified Smith predictor–bilinear proportional plus integral control for directional drilling[J]. IFAC-PapersOnLine, 2017, 50(2): 139-144. doi: 10.1016/j.ifacol.2017.12.026
    [10] SINGHA P, MEENA R, CHAKRABORTY S, et al. Robust PIDF-PID cascade control scheme for delay-dominant stable and integrating chemical processes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2025, 173: 106165. doi: 10.1016/j.jtice.2025.106165
    [11] 苗河泉, 刁培松, 徐广飞, 等. 基于改进史密斯预估控制的电液转向时滞补偿研究[J]. 农机化研究, 2023, 45(7): 232-237.

    MIAO H Q, DIAO P S, XU G F, et al. Research on time-delay compensation of electro-hydraulic steering based on improved smith predictor control[J]. Journal of Agricultural Mechanization Research, 2023, 45(7): 232-237.
    [12] MORALES L. Smith predictor based LAMDA sliding-mode control applied to a mixing tank with variable dead time[C]//2022 IEEE ANDESCON. Barranquilla, Colombia: IEEE, 2022: 1-6.
    [13] TANG G, LEI J M, DU H H, et al. Proportional-integral-derivative controller optimization by particle swarm optimization and back propagation neural network for a parallel stabilized platform in marine operations[J]. Journal of Ocean Engineering and Science, 2025, 10(1): 1-10.
    [14] FU J, GU S, WU L, et al. Research on optimization of diesel engine speed control based on UKF-Filtered data and PSO fuzzy PID control[J]. Processes, 2025, 13(3): 777. doi: 10.3390/pr13030777
    [15] ALI Z M, AHMED A M, HASANIEN H M, et al. Optimal design of fractional-order PID controllers for a nonlinear AWS wave energy converter using hybrid jellyfish search and particle swarm optimization[J]. Fractal and Fractional, 2024, 8(1): 6.
    [16] GHADIMI N. A new hybrid algorithm based on optimal fuzzy controller in multimachine power system[J]. Complexity, 2013, 21(1): 78-93.
    [17] LI B, CHE X Q, LIU C Y, et al. Parameter optimization of unmanned surface vessel propulsion motor based on BAS-PSO[J]. International Journal of Advanced Robotic Systems, 2022, 19(2): 172988142110406.
    [18] ZHANG H X, ZHAO Z, WEI Y C, et al. A self-tuning variable universe fuzzy PID control framework with hybrid BAS-PSO-SA optimization for unmanned surface vehicles[J]. Journal of Marine Science and Engineering, 2025, 13(3): 558.
    [19] 陈明志, 刘兰军, 陈家林, 等. 基于HCOPSO算法的USV舵向PID控制参数整定方法[J]. 水下无人系统学报, 2023, 31(3): 381-387.

    CHEN M Z, LIU L J, CHEN J L, et al. Parameter tuning method for USV rudder steering PID control based on HCOPSO algorithm[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 381-387.
    [20] ZHAO S Q, MU J R, LIU H D, et al. Heading control of USV based on fractional-order model predictive control[J]. Ocean Engineering, 2025, 322: 120476. doi: 10.1016/j.oceaneng.2025.120476
    [21] MCCUE L. Handbook of marine craft hydrodynamics and motion control[J]. IEEE Control Systems, 2016, 36(1): 78-79. doi: 10.1109/MCS.2015.2495095
    [22] 韩巍, 高丙坤, 郭浩轩. 分数阶时滞系统的Smith预估分数阶PI控制[J]. 吉林大学学报(信息科学版), 2020, 38(5): 542-547.

    HAN W, GAO B K, GUO H X. Smith predictor fractional order PI control for fractional order with time delay[J]. Journal of Jilin University(Information Science Edition), 2020, 38(5): 542-547.
    [23] 孙辉, 邓志诚, 赵嘉, 等. 混合均值中心反向学习粒子群优化算法[J]. 电子学报, 2019, 47(9): 1809-1818.

    SUN H, DENG Z C, ZHAO J, et al. Hybrid mean center opposition-based learning particle swarm optimization[J]. Acta Electronica Sinica, 2019, 47(9): 1809-1818.
    [24] 朱蓉, 靳雁霞, 范卫华. 融合优质粒子分布的粒子群优化算法[J]. 小型微型计算机系统, 2015, 36(3): 576-580.

    ZHU R, JIN Y X, FAN W H. Particle swarm optimization algorithm combination with the distribution of superior quality particles[J]. Journal of Chinese Computer Systems, 2015, 36(3): 576-580.
    [25] TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Vienna, Austria: IEEE, 2005: 695-701.
    [26] MA X L, LIU F, QI Y T, et al. MOEA/D with opposition-based learning for multiobjective optimization problem[J]. Neurocomputing, 2014, 146: 48-64.
    [27] 姜继海, 苏文海, 张洪波, 等. 直驱式容积控制电液伺服系统及其在船舶舵机上的应用[J]. 中国造船, 2004, 45(4): 58-63.

    JIANG J H, SU W H, ZHANG H B, et al. Direct drive volume control of electro-hydraulic servo system and its application to the steering system of ship[J]. Shipbuilding of China, 2004, 45(4): 58-63.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-12
  • 修回日期:  2025-10-13
  • 录用日期:  2025-10-21
  • 网络出版日期:  2025-11-05

目录

    /

    返回文章
    返回
    服务号
    订阅号