Unmanned Aerial Vehicle Aeromagnetic Positioning Method for Nearshore Submarine Cables Based on Power Frequency Magnetic Characteristics
-
摘要: 针对近岸海底电缆“最后一公里”高精度探测与定位的技术瓶颈, 本研究提出融合工频磁场特征解析的无人机(UAV)航磁综合探测方法。首先建立海底电缆工频磁场正演模型, 通过数值模拟揭示电缆工频磁特征信号的传播衰减规律; 其次, 创新性构建基于工频磁特征的频域信号提取算法, 有效提升强环境噪声背景下弱磁信号的识别精度; 继而提出结合地磁方向的逆向解析定位方法, 实现海底电缆走向的米级空间反演。实验采用自主研发的旋翼式超低空(飞行高度1 m)磁测UAV系统, 在温州近岸海域开展实测验证。结果表明: 系统在潮间带复杂地形条件下进行工频磁特征的航空磁探测作业, 通过对比分析发现, 工频特征定位法较常规磁异常定位法在近岸浅水区具有显著优势, 其定位误差不超过1.8 m, 可准确追踪电缆埋设路径。本研究为海底电缆工程巡检与定位提供了新的技术范式。Abstract: Aiming at the technical bottleneck of high-precision detection and positioning of the "last mile" of nearshore submarine cables, this study proposes a comprehensive unmanned aerial vehicle(UAV) aeromagnetic detection method integrating the analysis of power frequency magnetic field characteristics. Firstly, a forward model of the power frequency magnetic field of submarine cables is established, and the propagation and attenuation law of the power frequency magnetic characteristic signal of the cables is revealed through numerical simulation. Secondly, an innovative frequency-domain signal extraction algorithm based on power frequency magnetic characteristics is constructed, effectively improving the recognition accuracy of weak magnetic signals in the background of strong environmental noise. Then, a reverse analytical positioning method combined with the geomagnetic direction is proposed to achieve the meter-level spatial inversion of the direction of submarine cables. The experiment adopted the self-developed rotorcraft ultra-low-altitude (flight altitude of 1 meter) magnetic measurement unmanned aerial vehicle system to conduct actual measurement and verification in the coastal waters of Wenzhou. The results show that the system conducts aerial magnetic detection operations of power frequency magnetic characteristics under the complex terrain conditions of the intertidal zone. Through comparative analysis, it is found that the power frequency characteristic positioning method has significant advantages over the conventional magnetic anomaly positioning method in the nearshore shallow water area. Its positioning error does not exceed 4 meters, and it can accurately track the cable burial path. This research provides a new technical paradigm for the inspection and positioning of submarine cable projects.
-
表 1 UAV基本参数
Table 1. Parameters of the UAV
参数 指标 轴距/mm 1 600 自重(无电池)/kg 5 续航时间 55 min@3 kg载荷 最大速度/m/s 15 探杆总长度(展开作业)/m 4.8 单个探杆长度(折叠收纳)/m 1.2 表 2 深度-信号幅值衰减曲线对应参数
Table 2. The corresponding parameters of the depth-signal magnitude attenuation curve
参数 数值 $ p\left(1\right) $ −0.671 0 $ p\left(2\right) $ 11.838 5 $ p\left(3\right) $ −71.536 2 $ p\left(4\right) $ 155.688 2 表 3 估计位置和实测位置结果
Table 3. Estimated position and measured position results
估计X/m 估计Y/m 实测X/m 实测Y/m 误差/m 84.30 35.58 83.56 35.82 0.78 81.76 41.41 80.00 41.25 1.76 75.20 47.44 74.84 47.85 0.54 64.63 61.79 62.89 61.65 1.75 53.78 68.69 53.50 69.14 0.53 48.52 81.31 46.97 81.22 1.55 38.87 89.73 38.47 90.17 0.59 28.80 102.27 27.04 102.14 1.76 21.56 109.29 21.40 109.85 0.58 13.80 123.78 12.34 123.78 1.46 4.70 132.54 4.75 133.21 0.67 −2.43 146.68 −4.03 146.71 1.61 −7.68 147.45 −7.28 148.27 0.92 −12.10 155.64 −11.99 156.29 0.66 −15.62 161.85 −16.84 161.60 1.25 −21.02 167.40 −22.55 167.23 1.54 −29.34 172.13 −28.67 173.16 1.23 −42.47 186.20 −43.21 186.24 0.75 −50.98 193.17 −50.49 194.04 1.00 -
[1] 柳淑艳, 柳淑霞, 孙丽红, 等. 电缆路径仪的探测技术和性能分析[J]. 高电压技术, 2005(11): 68-70.LIU S Y, LIU S X, SUN L H, et al. Analysis of detection technology and performance for cable tracer[J]. High Voltage Engineering, 2005(11): 68-70. [2] 杜华. 基于FPGA的智能电缆路径检测仪的研究[D]. 西安: 西安电子科技大学, 2009. [3] 李忠虎, 熊治文. 智能型带电电缆路径检测仪设计[J]. 工矿自动化, 2013, 39(3): 111-113.LI Z H, XIONG Z W. Design of intelligent path detector for electrified cable[J]. Journal of Mine Automation, 2013, 39(3): 111-113. [4] 祝美灵, 刘舒雨, 韦依, 等. 基于六线圈的地下电力电缆定位技术研究[J]. 电子测量技术, 2021, 44(3): 176-180. doi: 10.19651/j.cnki.emt.2005568ZHU M L, LIU S Y, WEI Y, et al. A novel underground cable positioning system based on six induction coils[J]. Electronic Measurement Technology, 2021, 44(3): 176-180. doi: 10.19651/j.cnki.emt.2005568 [5] 黄烜城, 王威, 吕泽鹏, 等. 基于磁场分量波形分析的地下电缆弱磁探测技术[J]. 南方电网技术, 2020, 14(6): 90-96.HUANG X C, WANG W, LÜ Z P, et al. Weak magnetic detection technology for underground cable based on waveform analysis of magnetic field components[J]. Southern Power System Technology, 2020, 14(6): 90-96. [6] 李鸿, 韩聪, 张雷. 一种地下电力电缆路径检测系统的研究[J]. 电测与仪表, 2015, 52(16): 73-77.LI H, HAN C, ZHANG L. Research on an underground electricity cable path detection system[J]. Electrical Measurement & Instrumentation, 2015, 52(16): 73-77. [7] 李哲. 电力电缆路径定位技术应用研究[D]. 广州: 广东工业大学, 2021. [8] 王立, 张智鹏, 王海锋, 等. 基于弱磁探测的三相电缆路径快速定位方法[J]. 中国测试, 2024, 50(1): 24-31. doi: 10.11857/j.issn.1674-5124.2022080135WANG L, ZHANG Z P, WANG H F, et al. Fast positioning method of three-phase cable path based on weak magnetic field detection[J]. China Measurement & Test, 2024, 50(1): 24-31. doi: 10.11857/j.issn.1674-5124.2022080135 [9] 李世松, 袁燕岭, 董杰, 等. 一种计算三芯电力电缆表面磁场的解析方法[J]. 中国测试, 2017, 43(4): 95-99. doi: 10.11857/j.issn.1674-5124.2017.04.020LI S S, YUAN Y L, DONG J, et al. An analytical method for calculating the surface magnetic field for three-core electrical power cables[J]. China Measurement & Test, 2017, 43(4): 95-99. doi: 10.11857/j.issn.1674-5124.2017.04.020 [10] 刘英, 李文沛, 曹晓珑, 等. 隧道敷设交流电缆线路的工频磁场特性[J]. 电力建设, 2014, 35(8): 91-96. doi: 10.3969/j.issn.1000-7229.2014.08.016LIU Y, LI W P, CAO X L, et al. Characteristics of power frequency magnetic field for ac cable circuits laying in tunnels[J]. Electric Power Construction, 2014, 35(8): 91-96. doi: 10.3969/j.issn.1000-7229.2014.08.016 [11] 廖星, 王亚婕, 李健, 等. 邻近金属管道埋地敷设时三相电力电缆产生的电磁影响计算及分析[J]. 电工技术, 2022(21): 92-97.LIAO X, WANG Y J, LI J, et al. Calculation and analysis of electromagnetic influence caused by three-phase power cables buried near metal pipes[J]. Electric Engineering, 2022(21): 92-97. [12] 王海锋, 张智鹏, 白阳, 等. 基于镜像地磁方向磁分量的单条地下电缆管线定位方法[J]. 电测与仪表, 2023, 60(7): 145-152. doi: 10.19753/j.issn1001-1390.2023.07.022WANG H F, ZHANG Z P, BAI Y, et al. Positioning method of single underground cable pipeline based on magnetic component of mirror magnetic orientation[J]. Electrical Measurement & Instrumentation, 2023, 60(7): 145-152. doi: 10.19753/j.issn1001-1390.2023.07.022 [13] XIE S, MENDEZ A, DU H H, et al. Positioning method for dual Mach-Zehnder interferometric submarine cable security system[C]//Proceedings of SPIE-The International Society for Optical Engineering. Orlando, Florida, United States: SPIE, 2010, 7677: 7. [14] LIU Y, WU Y, HUANG L, et al. Submarine cable positioning using a residual convolutional neural network based on magnetic features[J]. Geophysics, 2024, 89(4): 10. [15] Hernandez S E, ACOSTA L, TOLEDO J. Endless pulse repetition: New method to measure cable lengths, distances and positioning[C]//2010 First International Conference on Sensor Device Technologies and Applications. Venice, Italy: IEEE, 2010. [16] CHEN L, ZHOU Y, ZHANG W, et al. Comparison of location accuracy between frequency domain reflectometry and line resonance analysis for power cables[C]//2020 IEEE International Conference on High Voltage Engineering and Application(ICHVE). Beijing, China: IEEE, 2020. [17] 陈士鹏. 基于RMBMA的水下磁场分布特性研究[D]. 南京: 南京信息工程大学, 2024. [18] 费春娇, 张群英, 吴佩霖, 等. 一种海洋磁异常检测噪声抑制算法[J]. 电子与信息学报, 2018, 40(11): 2779-2786. doi: 10.11999/JEIT180026FEI C J, ZHANG Q Y, WU P L, et al. Noise suppression algorithm for ocean magnetic anomaly detection[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2779-2786. doi: 10.11999/JEIT180026 -

下载: