Research on Optimization of Acoustic Deception Countermeasure Based on Adaptive Mutation Particle Swarm
-
摘要: 针对水面舰船防御水下制导装置的决策系统, 当前既缺乏多枚水声诱骗装置协同作战体系的相关研究, 且传统穷举法存在效率低、可移植性差的问题; 文中引入粒子群优化算法对对抗模型进行优化, 并通过添加自适应惯性权重与多半径变异机制改进该算法; 同时, 构建以防御成功率、最小交战距离及舰船存活时间为核心指标的多目标优化函数。优化参数包括舰船规避航向, 以及第1枚、第2枚助飞式水声诱骗装置的发射距离与角度。仿真结果表明, 所提改进粒子群算法相较传统算法具备更高效率、更快收敛速度与更优适应度。同时, 通过仿真揭示了不同舷角态势下最优对抗策略的差异性及其战术价值, 对现实海战中的水下制导装置防御策略制定有重要的参考价值。Abstract: In view of the lack of research on the cooperative combat system of multiple acoustic decoys in the decision-making system for surface ships to defend against underwater guidance device, as well as the problems of low efficiency and poor portability in the traditional exhaustive method, this paper introduces the particle swarm optimization algorithm to optimize the countermeasure model and improves the particle swarm algorithm by introducing adaptive inertia weight and multi-radius mutation mechanism. A multi-objective optimization function composed of defense success rate, minimum engagement distance and ship survival time is established. The optimization parameters include the ship's evasive course, the launch distance and angle of the first flying acoustic decoy, and the launch distance and angle of the second flying acoustic decoy. The simulation results show that the proposed improved particle swarm algorithm has higher efficiency, faster convergence speed and higher fitness value compared with the traditional algorithm. Through simulation, the differences in the optimal countermeasure strategies under different bearing angles and their tactical significance are revealed, which has important reference value for the formulation of defense strategies against underwater guidance device in real naval battles.
-
表 1 对抗优化参数
Table 1. Optimization Parameters for Comparison
优化对象 优化参数/单位 参数范围 舰船 舰船规避航向/(°) (0°, 180°) 诱骗装置1 第1枚诱骗装置发射距离/m (600, 2 000) 诱骗装置1 第1枚诱骗装置发射舷角/(°) (0°, 180°) 诱骗装置2 第2枚诱骗装置发射距离/m (600, 2 000) 诱骗装置2 第2枚诱骗装置发射舷角/(°) (0°, 180°) 表 2 大舷角态势优化前后的策略参数
Table 2. Strategy parameters before and after optimization of the main beam angle situation
策略参数 优化前 优化后 舰船规避航向 97.22° 64.84° 第1枚诱骗装置释放距离 1 919.1 m 1 211.6 m 第1枚诱骗装置释放方位 −163° −147° 第2枚诱骗装置释放距离 1 517.9 m 1 276.7 m 第2枚诱骗装置释放方位 −153° −72° 表 3 中等舷角态势优化前后的策略参数
Table 3. Strategy parameters before and after optimizing the mid angle situation
策略参数 优化前 优化后 舰艇规避航向 95.2° 70.8° 第1枚诱骗装置释放距离 1 998.4 m 1 687.1 m 第1枚诱骗装置释放方位 −85.6° −53.1° 第2枚诱骗装置释放距离 1 494.9 m 2 157.6 m 第2枚诱骗装置释放方位 −75.7° −28.9° 表 4 小舷角态势优化前后的策略参数
Table 4. Strategy parameters before and after optimizing the small angle situation
策略参数 优化前 优化后 舰船规避航向 117.74° 123.71° 第1枚诱骗装置释放距离 1 936.3 m 1 636.2 m 第1枚诱骗装置释放方位 −18.8° −36.2° 第2枚诱骗装置释放距离 1 436.7 m 1 429.2 m 第2枚诱骗装置释放方位 −8.6° −5.5° -
[1] 徐宁来, 张群飞, 王汝夯. 基于灰色决策理论的声诱饵作战效能评估[J]. 计算机仿真, 2010, 27(2): 5-9. doi: 10.3969/j.issn.1006-9348.2010.02.002XU N L, ZHANG Q F, WANG R P. Combat effectiveness evaluation of acoustic decoys based on grey decision theory[J]. Computer Simulation, 2010, 27(2): 5-9. doi: 10.3969/j.issn.1006-9348.2010.02.002 [2] 贾跃, 赵学涛, 林贤杰, 等. 基于BP神经网络的鱼雷作战效能模糊综合评估模型及其仿真[J]. 兵工学报, 2009, 30(9): 1232-1235. doi: 10.3321/j.issn:1000-1093.2009.09.016JIA Y, ZHAO X T, LIN X J, et al. Fuzzy comprehensive evaluation model of Torpedo combat Effectiveness based on BP neural network and its simulation[J]. Acta Ordnance Engineering, 2009, 30(9): 1232-1235. doi: 10.3321/j.issn:1000-1093.2009.09.016 [3] 彭会斌. 基于遗传算法的潜艇组合使用声诱饵防御鱼雷技术研究[J]. 指挥控制与仿真, 2018, 40(1): 52-55. doi: 10.3969/j.issn.1673-3819.2018.01.010PENG H B. Research on the Technology of submarine combined use of acoustic decoys for torpedo defense based on genetic algorithm[J]. Command Control and Simulation, 2018, 40(1): 52-55. doi: 10.3969/j.issn.1673-3819.2018.01.010 [4] 曾艳阳, 康凤举, 杨惠珍, 等. 基于粒子群的反鱼雷算法设计与仿真等.[J]. 系统仿真学报, 2012, 24(9): 2023-2026. doi: 10.16182/j.cnki.joss.2012.09.019ZENG Y Y, KANG F J, YANG H Z. et al. Against torpedo based on particle swarm algorithm design and simulation[J]. Journal of System Simulation, 2012, 24(9): 2023-2026. doi: 10.16182/j.cnki.joss.2012.09.019 [5] 侯文姝, 陆铭华. 基于粒子群算法的潜艇声诱饵防御声自导鱼雷研究[J]. 舰船科学技术, 2022, 44(18): 185-189. doi: 10.3404/j.issn.1672-7649.2022.18.039HOU W S, LU M H. Research on submarine acoustic decoy defense against acoustic homing torpedo based on particle swarm optimization[J]. Ship Science and Technology, 2022, 44(18): 185-189. doi: 10.3404/j.issn.1672-7649.2022.18.039 [6] 沈治河, 刘峰. 水面舰艇水声对抗系统对抗声自导鱼雷仿真分析及评估[J]. 军事运筹与系统工程, 2017, 31(1): 5-9. doi: 10.3969/j.issn.1672-8211.2017.01.001SHEN Z H, LIU F. Simulation analysis and evaluation of countermeasures acoustic homing torpedo for underwater acoustic countermeasures system of surface ships[J]. Military Operations Research and Systems Engineering, 2017, 31(1): 5-9. doi: 10.3969/j.issn.1672-8211.2017.01.001 [7] 付留芳, 周明, 等. 潜艇旋回机动规避对声自导鱼雷发现概率的影响分析[J]. 舰船电子工程, 2022, 42(11): 118-122. doi: 10.3969/j.issn.1672-9730.2022.11.026FU L F, ZHOU M, et al. Analysis of the influence of submarine turning maneuver avoidance on detection probability of acoustic homing torpedo[J]. Ship Electronics Engineering, 2022, 42(11): 118-122. doi: 10.3969/j.issn.1672-9730.2022.11.026 [8] 李明辉. 基于蒙特卡洛法的水下对抗效能推演评估研究[D]. 武汉: 中国舰船研究院, 2014. [9] 侯文姝, 陆铭华. 潜艇声诱饵防御声自导鱼雷改进PSO算法[J]. 水下无人系统学报, 2023, 31(3): 436-441.HOU W S, LU M H. Improved PSO algorithm for submarine acoustic decoy defense against acoustic homing torpedo[J]. Journal of Underwater Unmanned Systems, 2019, 31(3): 436-441. [10] 曲泓玥. 基于被动声纳实景仿真的水声对抗性能优化[D]. 哈尔滨: 哈尔滨工程大学, 2020. [11] 张净宇, 王靖, 吴志雄, 等. 一种改进遗传算子的遗传算法组卷策略[J]. 智能计算机与应用, 2023, 13(5): 40-45. doi: 10.3969/j.issn.2095-2163.2023.05.007ZHANG J Y, WANG J, WU Z X, et al. A grouping strategy for genetic algorithm based on improved genetic operators[J]. Intelligent Computer and Applications, 2023, 13(5): 40-45. doi: 10.3969/j.issn.2095-2163.2023.05.007 [12] 曾艳阳, 康凤举, 杨惠珍, 等. 基于粒子群的反鱼雷算法设计与仿真[J]. 系统仿真学报, 2012, 24(9): 2023-2026. doi: 10.16182/j.cnki.joss.2012.09.019ZENG Y Y, KANG F J, YANG H Z, et al. Against torpedo based on particle swarm algorithm design and simulation[J]. Journal of System Simulation, 2012, 24(9): 2023-2026. doi: 10.16182/j.cnki.joss.2012.09.019 -

下载: