• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下目标轴频电场弱信号综合检测方法研究

余平洋 王宏磊 杨益新

余平洋, 王宏磊, 杨益新. 水下目标轴频电场弱信号综合检测方法研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0079
引用本文: 余平洋, 王宏磊, 杨益新. 水下目标轴频电场弱信号综合检测方法研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0079
YU Pingyang, WANG Honglei, YANG Yixin. Research on Comprehensive Detection Methods for Weak Signals in Underwater Target Shaft Frequency Electric Fields[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0079
Citation: YU Pingyang, WANG Honglei, YANG Yixin. Research on Comprehensive Detection Methods for Weak Signals in Underwater Target Shaft Frequency Electric Fields[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0079

水下目标轴频电场弱信号综合检测方法研究

doi: 10.11993/j.issn.2096-3920.2025-0079
基金项目: 国家自然科学基金联合基金重点支持项目资助(U2341201); 国家自然科学基金面上项目资助(52271350); 基础产品创新科研项目资助(14520208040).
详细信息
    作者简介:

    余平洋(2000-), 男, 硕士, 主要研究方向为水下目标轴频电场探测

    通讯作者:

    王宏磊(1987-), 男, 博士, 副教授, 主要研究方向为水下目标非声探测和跨介质通信.

  • 中图分类号: TJ610.2; TP274.5; TN911.6

Research on Comprehensive Detection Methods for Weak Signals in Underwater Target Shaft Frequency Electric Fields

  • 摘要: 针对舰船轴频电场信号检测中目标信号弱且易被噪声掩盖的问题, 提出了一种基于“优先检测与选择性增强”原则的电场信号检测方法。首先利用自适应噪声完备集合经验模态分解(CEEMDAN)结合窄带功率谱能量峰值熵比(EPER)特征, 再通过滑动窗口与动态门限技术实现对目标信号的检测。信号检测成功后, 触发三稳态随机共振与变步长最小平均P范数(VSS-LMP)增强机制, 进一步增强目标信号的线谱特征, 并在此基础上实现目标信号特征频率的提取。仿真结果表明, 所提方法在信噪比为−12 dB的条件下检测准确率超过85%, 误检率在30%以下, 且能准确提取到目标信号特征频率, 为舰船弱电场信号的实时监测提供了可行的技术路径。

     

  • 图  1  算法整体流程示意图

    Figure  1.  Diagram of the overall flow of the algorithm

    图  2  原始电场信号时域波形及频谱图

    Figure  2.  Diagram of the time-domain waveform and spec$trum of the original electric field signal

    图  3  预处理信号时域波形及频谱图

    Figure  3.  Diagram of the time-domain waveform and spectrum of the preprocessed signal

    图  4  三稳态随机共振算法处理仿真结果图

    Figure  4.  Diagram of simulation results processed by the tri-stable stochastic resonance algorithm

    图  5  VSS-LMP算法处理仿真结果图

    Figure  5.  Diagram of simulation results processed by the VSS-LMP algorithm

    图  6  基于文中检测算法的检测性能分析结果图

    Figure  6.  Diagram of detection performance analyzed using the detection algorithm proposed in this work

    图  7  基于小波阈值去噪算法的检测性能分析结果图

    Figure  7.  Diagram of detection performance analyzed using the wavelet threshold denoising algorithm

  • [1] 陈家林, 徐灏, 袁奕博, 等. 水下实时综合电磁探测系统设计[J]. 水下无人系统学报, 2023, 31(4): 600-606.

    CHEN J L, XU H, YUAN Y B, et al. Design of an underwater real-time integrated electromagnetic detection system[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 600-606.
    [2] 李松, 石敏, 栾经德, 等. 舰船轴频电场信号特征提取与检测方法[J]. 兵工学报, 2015, 36(S2): 220-224.

    LI S, SHI M, LUAN J D, et al. The feature extraction and detection for shaft-rate electric field of a ship[J]. Acta armamentarii, 2015, 36(S2): 220-224.
    [3] 李越, 张伽伟, 程锦房. 基于信号特征的舰船轴频电场检测改进算法[J]. 水下无人系统学报, 2019, 27(4): 398-405.

    LI YUE, ZHANG J W, CHENG J F. Improved detection algorithm of ship’s shaft-frequency electric field based on signal features[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 398-405.
    [4] 赵文春, 姜润翔, 喻鹏, 等. 基于轴频电场线谱特征的目标检测及识别[J]. 兵工学报, 2020, 41(6): 1165.

    ZHAO W C, JIANG R X, YU P, et al. Detection and identification of ship shaft-rate electric field based on line-spectrum characteristics[J]. Acta Armamentarii, 2020, 41(6): 1165.
    [5] 李婧, 韩鹏, 朱莹. 一种改进的随机共振技术在舰船轴频电场信号检测中的应用[J]. 国外电子测量技术, 2021, 40(4): 130-134.

    LI J, HAN P, ZHU Y. Application of an improved stochastic resonance technique detecting ship’s shaft-rate electric field signal[J]. Foreign Electronic Measurement Technology, 2021, 40(4): 130-134.
    [6] 胡鹏, 龚沈光, 蔡旭东. 自适应线谱增强算法改进及其在轴频电场信号检测中的应用[J]. 武汉理工大学学报(交通科学与工程版), 2012, 36(06): 1217-1220.

    HU P, GONG S G, CAI X D. Improvement of adaptive line enhancement and its application in detection of ship shaft-rate electric field signal[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2012, 36(06): 1217-1220.
    [7] 喻鹏, 程锦房, 张伽伟, 等. 基于Rao检测器的舰船轴频电场滑动门限检测方法[J]. 兵工学报, 2021, 42(4): 827.

    YU P, CHENG J F, ZHANG J W, et al. Ship shaft-rate electric field sliding threshold detection method based on rao detector[J]. Acta Armamentarii, 2021, 42(4): 827.
    [8] 程锐, 姜润翔, 龚沈光. 基于EMD和4阶累积量的船舶轴频电场线谱提取[J]. 舰船科学技术, 2016, 38(1): 94-98.

    CHENG R, JIANG R X, GONG S G. Extraction of line spectrum of the ship shaft-rate electric field based on EMD and fourth-order cumulant[J]. Ship Science and Technology, 2016, 38(1): 94-98.
    [9] 何芳, 王向军, 王晓蓓. 舰船轴频电场线谱提取方法及仿真研究[J]. 计算机仿真, 2015, 32(9): 5-9.

    HE F, WANG X J, WANG X B. Simulation of ship shaft-rate electric field line-spectrum extraction method[J]. Computer Simulation, 2015, 32(9): 5-9.
    [10] 嵇斗, 单潮龙. 基于三稳随机共振的舰船轴频电场弱信号检测研究[J]. 海军工程大学学报, 2018, 30(06): 12-16.

    JI D, SHAN C L. Weak signal detection in ship′s shaft-rate EM field based on stochastic resonance of tri-stable system[J]. Journal of Naval University of Engineering, 2018, 30(06): 12-16.
    [11] 黄勇, 程锦房, 张伽伟, 等. 最小平均p范数算法在轴频电场检测中的应用[J]. 舰船科学技术, 2022, 44(13): 139-143.

    HUANG Y, CHENG J F, ZHANG J W, et al. Application of least mean p-norm in shaft-rate electric field detection[J]. Ship Science and Technology, 2022, 44(13): 139-143.
    [12] 程锐, 陈聪, 张伽伟. 基于EEMD和改进功率谱熵的船舶轴频电场检测[J]. 华中科技大学学报: 自然科学版, 2017, 45(5): 11-16.

    CHENG R, CHEN C, ZHANG J W. Detection of ship shaft-rate electric field based on EEMD and modified power spectral entropy[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(5): 11-16.
    [13] ARDEKANI Z M. Nonlinear techniques for source detection and localization in shallow ocean with non-Gaussian noise[D]. Singapore: Nanyang Technological University, 2013.
    [14] CHO S H, JUNG H K, LEE H, et al. Real-time underwater object detection based on DC resistivity method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6833-6842. doi: 10.1109/TGRS.2016.2591619
    [15] WU Z, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
    [16] SUN J, LI Z, ZOU F, et al. Adaptive determining for optimal cluster number of K-Means clustering algorithm[C]//Proceedings of the 2012 International Conference on Information Technology and Software Engineering: Information Technology & Computing Intelligence. Heidelberg, Berlin: Springer, 2012: 551-560.
    [17] 王彪, 李涵琼, 高世杰, 等. 一种变步长最小平均p范数自适应滤波算法[J]. 电子与信息学报, 2022, 44(2): 661-667.

    WANG B, LI H Q, GAO S J, et al. A variable step size least mean p-power adaptive filtering algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(2): 661-667.
  • 加载中
图(7)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  28
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-17
  • 修回日期:  2025-08-27
  • 录用日期:  2025-09-08
  • 网络出版日期:  2025-11-18

目录

    /

    返回文章
    返回
    服务号
    订阅号