| [1] |
LESSIA A W. A review of laminated composite plate buckling[J]. Applied Mechanics Reviews, 1987, 40(5): 575-591. doi: 10.1115/1.3149534
|
| [2] |
张阿漫, 明付仁, 刘云龙, 等. 水下爆炸载荷特性及其作用下的舰船毁伤与防护研究综述[J]. 中国舰船研究, 2023, 18(3): 139-154.ZHANG A M, MING F R, LIU Y L, et al. Review of research on underwater explosion related to load characteristics and ship damage and protection[J]. Chinese Journal of Ship Research, 2023, 18(3): 139-154.
|
| [3] |
王余, 熊永亮, 田轩麾, 等. 不同头型回转体高速入水运动过程对比研究[J]. 水下无人系统学报, 2024, 32(3): 451-462.WANG Y, XIONG Y K, TIAN X H, et al. Comparison of high-speed water entry movement process of axisymmetric bodies with different head shapes[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 451-462.
|
| [4] |
WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid ofinstataneous photography[J]. Philosophical Transactions of the Royal Society, 1900, 194(A): 175-200.
|
| [5] |
VON K T. The impact on seaplane floats during landing[R]. National Advisory Committee for Aeronautics, 1929: 309-313.
|
| [6] |
WAGNER H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Journal of Applied Mathematics and Mechanics, 1932, 12(4): 193-215.
|
| [7] |
FALTINSEN O M, CHEZHIAN M. A generalized Wagner method for three-dimensional slamming[J]. Journal of Ship Research, 2005, 49(4): 279-287.
|
| [8] |
ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246: 593-612. doi: 10.1017/S002211209300028X
|
| [9] |
TASSIN A, JACQUES N, NEME A, et al. An efficient numerical method for the three dimensional Wagner problem[C]//Proceeding of the 25th International Workshop on Water Waves and Floating Bodies IWWWFB. Harbin, China: IWWWFB, 2010: 2-3.
|
| [10] |
IRANMANESH A, PASSANDIDEH F M. A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique[J]. Ocean Engineering, 2017, 130: 557-566. doi: 10.1016/j.oceaneng.2016.12.018
|
| [11] |
NGUYEN V T, VU D T, PARK W G, et al. Navier–Stokes solver for water entry bodies with moving Chimera grid method in 6DOF motions[J]. Computers & Fluids, 2016, 140: 19-38. doi: 10.1016/j.compfluid.2016.09.005
|
| [12] |
MIRZAII I, PASSANDIDEH F M. Modeling free surface flows in presence of an arbitrary moving object[J]. International Journal of Multiphase Flow, 2012, 39: 216-226. doi: 10.1016/j.ijmultiphaseflow.2011.08.005
|
| [13] |
张岳青, 白治宁, 曾小凡, 等. 楔形和弧形结构入水冲击响应研究[J]. 船舶力学, 2020, 24(3): 400-408.ZHANG Y Q, BAI Z N, ZENG X F, et al. Study of water impact response of wedge- and arc-shaped structures[J]. Journal of Ship Mechanics, 2020, 24(3): 400-408.
|
| [14] |
石汉成, 蒋培, 程锦房, 等. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析[J]. 舰船科学技术, 2010(10): 104-107.SHI H C, JIANG P, CHENG J F, et al. Researh on numerical simulation of mine water-entry impact acceleration and underwater ballistic trajectory under the different mine’s head shape[J]. Ship Science and Technology, 2010(10): 104-107.
|
| [15] |
朱珠, 袁绪龙. 柱体高速入水冲击载荷与空泡特性[J]. 计算机仿真, 2014, 31(3): 29-33. doi: 10.3969/j.issn.1006-9348.2014.03.007ZHU Z, YUAN X L. High-speed water-entry impact and cavity characters of cylinder[J]. Computer Simulation, 2014, 31(3): 29-33. doi: 10.3969/j.issn.1006-9348.2014.03.007
|
| [16] |
侯昭, 孙铁志, 张桂勇, 等. 回转体倾斜入水空泡试验及六自由度数值计算研究[J]. 宇航总体技术, 2017, 1(4): 38-45.HOU Z, SUN T Z, ZHANG G Y, et al. Experimental investigation and 6-DOF simulation of oblique waterentry cavity of revolution body[J]. Astronautical Systems Engineering Technology, 2017, 1(4): 38-45.
|
| [17] |
王永虎. 空投雷弹入水冲击头型特性参数分析[J]. 航空计算技术, 2010, 40(06): 14-17.WANG Y H. Nose performance description coefficience of air borne torpedo and deep-mine during water-entry impact[J]. Aeronautical Computing Technique, 2010, 40(06): 14-17.
|
| [18] |
龙腾, 梁津铭, 张宝收, 等. 跨介质飞行器串行入水流场演化与运动特性研究[J]. 机械工程学报, 2025, 1-10.LONG T, LIANG J M, ZHANG B S, et al. Study on the motion characteristics and water field evolution of cross-medium aircrafts entry water in tandem[J]. Journal of Mechanical Engineering, 2025, 1-10.
|
| [19] |
任泽宇, 王小刚, 孔德才, 等. 跨介质飞行器倾斜入水弹道拉平特性研究[J]. 宇航总体技术, 2025, 9(02): 525-58.REN Z Y, WANG X G, KONG D C, et al. Study on the flattening characteristics of oblique water entry trajectory of trans-media aircrafts[J]. Astronautical Systems Engineering Technology, 2025, 9(02): 525-58.
|
| [20] |
彭睿哲, 冯和英, 向敏, 等. 头部喷气式超空泡航行体垂直入水性能研究[J]. 振动与冲击, 2024, 43(20): 238-246. doi: 10.13465/j.cnki.jvs.2024.20.025PENG R Z, FENG H Y, XIANG M, et al. A study on the vertical water entry performance of a head jet supercavitating navigation body[J]. Journal of Vibration and Shock, 2024, 43(20): 238-246. doi: 10.13465/j.cnki.jvs.2024.20.025
|
| [21] |
KHABAKHPASHEVA T I, KOROBKIN A A, MALENICA S, et al. Water entry of an elastic conical shell[J]. Journal of Fluid Mechanics, 2024, 980: A34. doi: 10.1017/jfm.2024.17
|
| [22] |
LIU X, LIU W, MING F, et al. Investigation of free surface effect on the cavity expansion and contraction in high-speed water entry[J]. Journal of Fluid Mechanics, 2024, 988: A53. doi: 10.1017/jfm.2024.473
|
| [23] |
GUO Z, ZHANG W, XIAO X, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. International Journal of Impact Engineering, 2012, 49: 43-60. doi: 10.1016/j.ijimpeng.2012.04.004
|
| [24] |
严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005.
|
| [25] |
徐宣志. 鱼雷力学[M]. 北京: 国防工业出版社, 1992.
|
| [26] |
ЛОГВИНООВЧ Г В. Hydrodynamics of free-boundary flows[M]. Shanghai: Shanghai Jiao Tong University Press. 2012.
|
| [27] |
李永利, 冯金富, 齐铎, 等. 航行器低速斜入水运动规律[J]. 北京航空航天大学学报, 2016, 42(12): 2698-2708. doi: 10.13700/j.bh.1001-5965.2016.0153LI Y L, FENG J F, QI D, et al. Movement rule of a vehicle obliquely water-entry at low speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2698-2708. doi: 10.13700/j.bh.1001-5965.2016.0153
|
| [28] |
王永虎, 石秀华. 空投鱼雷斜入水冲击动力建模及仿真分析[J]. 计算机仿真, 2009, 26(1): 46-49.WANG Y H, SHI X H. Modeling and simulation analysis of oblique water-entry impact dynamics of air-dropped torpedo[J]. Computer Simulation, 2009, 26(1): 46-49.
|
| [29] |
HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
|
| [30] |
薛景嘉, 左婧滢, 韦健飞, 等. 基于雷诺应力输运模型的气膜冷却效率预测标通量模型修正研究[J]. 推进技术, 2025, 46(8): 203-214.XUE J J, ZUO Q Y, WEI J F, et al. Scalar flux models modification for prediction of film cooling efficiency based on Reynolds stress model[J]. Journal of Propulsion Technology, 2025, 46 (8): 203-214.
|
| [31] |
金亚昆. 桥墩局部冲刷坑发展中的三维紊流场研究[D]. 北京: 北京交通大学, 2014.
|
| [32] |
陈宇翔. 物体穿过自由表面的多相流体动力学问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
|
| [33] |
DYMOND J H, MALHOTRA R. The Tait equation: 100 years on[J]. International Journal of Thermophysics, 1988, 9(6): 941-951. doi: 10.1007/BF01133262
|
| [34] |
刘文韬. 细长航行体高速入水冲击载荷与结构响应机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
|
| [35] |
孙光耀. 多种头型下细长航行体高速入水数值模拟研究[D]. 重庆: 重庆交通大学, 2024.
|