• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双低秩调整训练的船舶辐射噪声识别

马治勋 汤宁 李璇 郝程鹏

马治勋, 汤宁, 李璇, 等. 基于双低秩调整训练的船舶辐射噪声识别[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0114
引用本文: 马治勋, 汤宁, 李璇, 等. 基于双低秩调整训练的船舶辐射噪声识别[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0114
MA Zhixun, TANG Ning, LI Xuan, HAO Chengpeng. Ship Radiated Noise Recognition Based on Dual Low-Rank Adaptation Training[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0114
Citation: MA Zhixun, TANG Ning, LI Xuan, HAO Chengpeng. Ship Radiated Noise Recognition Based on Dual Low-Rank Adaptation Training[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0114

基于双低秩调整训练的船舶辐射噪声识别

doi: 10.11993/j.issn.2096-3920.2025-0114
详细信息
    作者简介:

    马治勋(1991-), 男, 硕士, 助理研究员, 主要研究方向为声呐信号处理、目标检测与识别

    通讯作者:

    郝程鹏(1975-), 男, 博士, 研究员, 主要研究方向为水声信号处理、信号检测与估计.

  • 中图分类号: U697.94; TJ630

Ship Radiated Noise Recognition Based on Dual Low-Rank Adaptation Training

  • 摘要: 针对深度学习模型在船舶辐射噪声识别中由数据短缺导致的泛化能力受限问题, 文中提出了权重-特征双低秩迁移学习框架。该框架从模型权重和特征表达两个维度协同展开低秩优化: 在权重空间, 冻结预训练权重, 通过轻量化低秩权重调整(WLoRA)模块构建可学习低秩权重更新, 以较少参数量完成权重微调, 从而降低过拟合风险; 在特征空间, 基于船舶辐射噪声Mel时频谱的内在低秩结构, 通过低秩特征调整(FLoRA)模块对特征进行压缩和重构, 从而显式约束模型学习低秩特征。该框架充分考虑了Mel时频谱的固有低秩结构, 深入挖掘预训练模型潜力, 有效提升了迁移学习性能。通过ShipsEar和Deepship两个公开数据集的实验证明, 相对于直接微调预训练模型, 所提出方法能够有效提升迁移学习在船舶辐射嗓声分类模型中的性能。进一步的消融实验验证了两个低秩模块的有效性。

     

  • 图  1  低秩权重/特征调整模块与完全微调方法结构图

    Figure  1.  Structure diagram of WLoRA, FLoRA and complete fine-tuning method

    图  2  Mel时频谱低秩分析

    Figure  2.  Mel spectrogram low rank analysis

    图  3  ResNet18特征图低秩分析

    Figure  3.  Low rank analysis of ResNet18 feature maps

    图  4  双低秩调整迁移学习框架

    Figure  4.  Double low rank adjustment transfer learning framework

    图  5  权重低秩自适应以及特征低秩自适应模块设计

    Figure  5.  Design of WLoRA and FLoRA modules

    图  6  ShipsEar和DeepShip数据集的混淆矩阵

    Figure  6.  Confusion matrix of ShipsEar and DeepShip datasets

    图  7  ShipsEar和DeepShip特征聚类结果

    Figure  7.  Feature clustering results of ShipsEar and DeepShip Datasets

    图  8  ShipsEar和DeepShip的ROC曲线及AUC指标

    Figure  8.  ROC curves and AUC value of ShipsEar and DeepShip datasets

    表  1  数据集划分

    Table  1.   Division of datasets.

    数据集训练音频测试音频训练样本测试样本
    ShipsEar6421470117
    DeepShip4031377 6502 516
    下载: 导出CSV

    表  2  ShipsEar数据集上对比实验结果

    Table  2.   Results of experiments on ShipsEar dataset.

    方法特征OA/%Params/M时间/sFLOPs/G
    ResNet18Mel79.511.1797684.40
    SIR&LMRMel83.811.8411 73313.40
    CMoESTFT85.511.1912 10255.62
    所提方法Mel86.311.2418244.43
    下载: 导出CSV

    表  3  DeepShip数据集上对比实验结果

    Table  3.   Results of experiments on DeepShip dataset.

    方法特征OA/%Params/M时间/sFLOPs/G
    ResNet18Mel74.811.1797684.40
    SIR&LMRMel77.111.8411 73317.70
    CMoESTFT76.811.1912 10216.90
    所提方法Mel77.211.2418244.43
    下载: 导出CSV

    表  4  模块消融实验结果

    Table  4.   Results of ablation experiments

    方法OAParams
    ResNet77.7%11.179M
    ResNet-pre79.5%11.179M
    WLoRA83.8%11.179M
    FLoRA85.5%11.241M
    Full86.3%11.241M
    下载: 导出CSV

    表  5  $ \alpha $参数敏感性实验

    Table  5.   Results of $ \boldsymbol{\alpha } $ sensitivity analysis

    $ \alpha $取值OA/%Params/M
    0.082.111.241
    0.183.511.241
    0.286.311.241
    0.385.511.241
    0.482.111.241
    0.580.311.241
    下载: 导出CSV

    表  6  $ {K}_{w} $参数敏感性实验

    Table  6.   Results of $ {\boldsymbol{K}}_{\boldsymbol{w}} $ sensitivity analysis

    方法OA/%Params/M
    482.111.241
    883.811.241
    1685.511.241
    3286.311.241
    6486.311.241
    下载: 导出CSV

    表  7  单独使用WLoRA的$ {\boldsymbol{K}}_{\boldsymbol{w}} $参数敏感性实验

    Table  7.   Results of $ {\boldsymbol{K}}_{\boldsymbol{w}} $ sensitivity analysis without FLoRA Module

    方法OA/%Params/M
    477.711.179
    880.311.179
    1682.111.179
    3282.111.179
    6483.811.179
    下载: 导出CSV

    表  8  $ {\boldsymbol{K}}_{\boldsymbol{f}} $参数敏感性实验

    Table  8.   Results of $ {\boldsymbol{K}}_{\boldsymbol{f}} $ sensitivity analysis

    方法OA/%Params/M
    483.811.187
    882.111.195
    1684.611.201
    3286.311.241
    6485.511.302
    下载: 导出CSV
  • [1] BROOKER A, HUMPHREY V. Measurement of radiated underwater noise from a small research vessel in shallow water[J]. Ocean Engineering, 2016, 120: 182-189. doi: 10.1016/j.oceaneng.2015.09.048
    [2] FILLINGER L, DE THEIJE P, ZAMPOLLI M, et al. Towards a passive acoustic underwater system for protecting harbours against intruders[C]//2010 International WaterSide Security Conference. Carrara, Italy: IEEE, 2010: 1-7.
    [3] 王培兵, 彭圆. 深度学习在水声目标识别中的应用研究[J]. 数字海洋与水下攻防, 2020, 3(1): 11-17.

    WANG P B, PENG Y. Research on application of deep learning in underwater acoustic target recognition[J]. Digital Ocean & Underwater Warfare, 2020, 3(1): 11-17.
    [4] 张奇, 笪良龙, 王超, 等. 基于深度学习的水声被动目标识别研究综述[J]. 电子与信息学报, 2023, 45(11): 4190-4202.

    ZHANG Q, DA L L, WANG C, et al. An overview on underwater acoustic passive target recognition based on deep learning[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4190-4202.
    [5] 刘嘉尉. 基于改进型ResNet模型的水声目标识别方法研究[D]. 延吉: 延边大学, 2024.
    [6] 薛灵芝, 曾向阳. 动态水声环境中SE_ResNet模型目标识别方法[J]. 哈尔滨工程大学学报, 2023, 44(6): 939-946.

    XUE L Z, ZENG X Y. Target recognition method of SE_ResNet model in dynamic underwater acoustic environment[J]. Journal of Harbin Engineering University, 2023, 44(6): 939-946.
    [7] XU Y C, CAI Z M, KONG X P. Improved pitch shifting data augmentation for ship-radiated noise classification[J]. Applied acoustics, 2023, 211: 109468. doi: 10.1016/j.apacoust.2023.109468
    [8] 李理, 李向欣, 殷敬伟. 基于生成对抗网络的船舶辐射噪声分类方法研究[J]. 电子与信息学报, 2022, 44(6): 1974-1983.

    LI L, LI X X, YIN J W. Research on classification algorithm of ship radiated noise data based on generative adversarial network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1974-1983.
    [9] JIANG Z, ZHAO C, WANG H Y. Classification of underwater target based on S-ResNet and modified DCGAN models[J]. Sensors, 2022, 22(6): 2293. doi: 10.3390/s22062293
    [10] XU J, XIE Y, WANG W C. Underwater acoustic target recognition based on smoothness-inducing regularization and spectrogram-based data augmentation[J]. Ocean Engineering, 2023, 281: 114926. doi: 10.1016/j.oceaneng.2023.114926
    [11] CUI X D, HE Z F, XUE Y T, et al. Few-shot underwater acoustic target recognition using domain adaptation and knowledge distillation[J]. IEEE Journal of Oceanic Engineering, 2025, 50(2): 637-653. doi: 10.1109/JOE.2025.3532036
    [12] LI Z Y, XIANG S C, YU T, et al. Oceanship: A large-scale dataset for underwater audio target recognition[C]//International Conference on Intelligent Computing. Singapore: Springer Nature Singapore, 2024: 475-486.
    [13] GONG Y, CHUNG Y A, GLASS J. PSLA: Improving audio tagging with pretraining, sampling, labeling, and aggregation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3292-3306. doi: 10.1109/TASLP.2021.3120633
    [14] HU E, SHEN Y L, WALLIS P, et al. LoRA: Low-rank adaptation of large language models[C]//Proceedings of the International Conference on Learning Representations. Online: ICLR, 2021: 1-26.
    [15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778.
    [16] ZHANG H Y, CISSÉ M, DAUPHIN Y, et al. Mixup: Beyond empirical risk minimization[C]//Proceedings of the International Conference on Learning Representations. Online: ICLR, 2017: 1-11.
    [17] SANTOS-DOMÍNGUEZ D, TORRES-GUIJARRO S, CARDENAL-LÓPEZ A, et al. ShipsEar: An underwater vessel noise database[J]. Applied Acoustics, 2016, 113: 64-69. doi: 10.1016/j.apacoust.2016.06.008
    [18] IRFAN M, ZHANG J B, ALI S, et al. DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification[J]. Expert Systems with Applications, 2021, 183: 115270. doi: 10.1016/j.eswa.2021.115270
    [19] XIE Y, REN J W, XU J. Unraveling complex data diversity in underwater acoustic target recognition through convolution-based mixture of experts[J]. Expert Systems with Applications, 2024, 249: 123431. doi: 10.1016/j.eswa.2024.123431
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-25
  • 修回日期:  2025-09-15
  • 录用日期:  2025-09-26
  • 网络出版日期:  2025-11-26

目录

    /

    返回文章
    返回
    服务号
    订阅号