• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成算法在船舶辐射噪声预报中的应用研究

强以铭 陈奕宏 裴雨晴 庞业珍 谢硕

强以铭, 陈奕宏, 裴雨晴, 等. 集成算法在船舶辐射噪声预报中的应用研究[J]. 水下无人系统学报, 2025, 33(6): 1-8 doi: 10.11993/j.issn.2096-3920.2025-0111
引用本文: 强以铭, 陈奕宏, 裴雨晴, 等. 集成算法在船舶辐射噪声预报中的应用研究[J]. 水下无人系统学报, 2025, 33(6): 1-8 doi: 10.11993/j.issn.2096-3920.2025-0111
QIANG Yiming, CHEN Yihong, PEI Yuqing, PANG Yezhen, XIE Shuo. Application of ensemble learning models on ship radiation noise prediction[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0111
Citation: QIANG Yiming, CHEN Yihong, PEI Yuqing, PANG Yezhen, XIE Shuo. Application of ensemble learning models on ship radiation noise prediction[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0111

集成算法在船舶辐射噪声预报中的应用研究

doi: 10.11993/j.issn.2096-3920.2025-0111
详细信息
    作者简介:

    强以铭(1994-) , 女, 硕士, 工程师, 主要研究方向为数据科学

    通讯作者:

    陈奕宏(1980-), 男, 硕士, 研究员, 主要研究方向为水声学.

  • 中图分类号: TJ630;U661

Application of ensemble learning models on ship radiation noise prediction

  • 摘要: 船舶多振动源产生的辐射噪声, 严重影响民船舒适性与军舰隐身性能。准确预测其辐射噪声水平与分布, 可为船舶设计阶段的减振降噪优化提供关键支撑。针对船舶振动源数量多以及噪声辐射机制复杂的问题, 文中首先采用集成算法中的随机森林(RF)与梯度提升树(GBDT)算法, 对不同工况、不同测点的1/3倍频程噪声声压级开展快速预报, 并与贝叶斯岭回归(Bayesian Ridge Regression)模型的预报效果进行对比验证。4种测试工况的验证结果显示, 集成算法在3种工况下的预报效果优于贝叶斯岭回归, 平均绝对误差均小于5 dB; 进一步对上述模型进行优化, 通过在不同层次构建集成算法与线性算法的基础单元并组合, 形成辐射噪声联合预报方案, 其精度较单一集成算法提升1.5 dB。文中研究提出的集成算法及联合预报方案, 为船舶辐射噪声的快速精准分析提供了有效技术工具。

     

  • 图  1  千岛湖试验场

    Figure  1.  Qiandao Lake test site

    图  2  样本采集试验装置示意图

    Figure  2.  Schematic diagram of sample collection test device

    图  3  样本训练与验证分割方式

    Figure  3.  Sample training and verification segmentation

    图  4  RF与GBDT模型结构示意图

    Figure  4.  Structure diagram of RF and GBDT models

    图  5  不同频率下预报模型噪声等级预报结果

    Figure  5.  Prediction results of noise level of prediction model at different frequencies

    图  6  不同测点下模型噪声等级预报结果

    Figure  6.  Prediction results of model noise level at different measuring points

    图  7  优化后模型结构示意图

    Figure  7.  Schematic diagram of optimized model structure

    图  8  优化后模型对于工况4预报效果

    Figure  8.  Model performance of the optimized model for condition 4

    表  1  集成模型超参数列表

    Table  1.   List of integration model superparameters

    模型名称模型超参数
    RF回归CART数量, 袋外评分, 最大特征数及最大深度等
    GBDT回归CART数量, 学习率, 阿尔法,
    子样本比例及最大特征数等
    下载: 导出CSV

    表  2  不同频率区模型预报误差比对

    Table  2.   Comparison of model prediction errors in different frequency regions

    频域/ HzRFGBDTBayesian
    10 ~1002.492.212.56
    100 ~ 1 0002.832.532.76
    1 000~10 0002.122.313.33
    下载: 导出CSV

    表  3  不同工况下测点一模型预报误差比对

    Table  3.   Comparison of prediction error between measurement point and model under different working conditions

    MAE/dB RMSE /dB
    工况1 工况2 工况3 工况4 工况1 工况2 工况3 工况4
    RF 3.2 3.0 1.2 4.8 3.2 3.1 1.2 4.9
    GBDT 2.9 2.9 1.1 4.3 2.9 3.0 1.1 4.4
    Bayesian 4.3 3.2 1.7 3.8 4.4 3.4 1.8 3.9
    下载: 导出CSV
  • [1] HODGES C H, WOODHOUSE J. Theories of noise and vibration transmission in complex structures[J]. Reports on Progress in Physics, 1986, 49(2): 107-170. doi: 10.1088/0034-4885/49/2/001
    [2] 庞业珍, 裴雨晴. 基于船上振动噪声监测的水下辐射噪声实时预报研究进展[J]. 隐身技术, 2023(1): 1-10.

    PANG Y Z, PEI Y Q. Research progress on real-time prediction of underwater radiated noise based on shipboard vibration and noise monitoring[J]. Stealth Technology, 2023(1): 1-10 (in Chinese).
    [3] 王学杰, 单衍贺, 秦新华, 等. 舰船水下辐射噪声快速预报方法[J]. 噪声与振动控制, 2018, 38(3): 1-5.

    WANG X J, SHAN Y H, QIN X H, et al. Rapid prediction method of ship underwater radiated noise[J]. Noise and Vibration Control, 2018, 38(3): 1-5 .
    [4] 庞业珍, 俞孟萨. 基于多距离声阵实测回归传播损失的浅水域水下辐射噪声源级测量方法[J]. 船舶力学, 2023, 27(4): 598-606.

    PANG Y Z, YU M S. Measurement method of underwater radiated noise source level in shallow water based on multi-range hydrophone array measurement and regression propagation loss[J]. Journal of Ship Mechanics, 2023, 27(4): 598-606 .
    [5] CINTOSUN E, GILROY L. Estimating ship underwater radiated noise from onboard vibrations[C]//SNAME Maritime Convention. SNAME, Italy: 2021: 1-15.
    [6] ZHANG B, XIANG Y, HE P, et al. Study on prediction methods and characteristics of ship underwater radiated noise within full frequency[J]. Ocean Engineering, 2019, 174: 61-70. doi: 10.1016/j.oceaneng.2019.01.028
    [7] GUO J, WANG M, KANG Y, et al. Prediction of ship cabin noise based on RBF neural network [J]. Mathematical Problems in Engineering, 2019: 1-12.
    [8] 徐源超, 蔡志明, 孔晓鹏, 等. 船舶辐射噪声分类卷积神经网络的可视化分析和卷积核剪枝[J]. 电子与信息学报, 2023, 45(1): 1-9.

    XU Y C, CAI Z M, KONG X P, et al. Visualization analysis and kernel pruning of CNN for ship radiated noise classification[J]. Journal of Electronics & Information Technology, 2023, 45(1): 1-9.
    [9] SHIKI T. Estimation of prediction error by using K-fold cross-validation[J]. Statistics and Computing, 2011, 21(2): 137-146. doi: 10.1007/s11222-009-9153-8
    [10] DIETTERICH T G. Ensemble learning[J]. The Handbook of Brain Theory and Neural Networks, 2002, 2(1): 110-125.
    [11] DONG X, YU Z, CAO W, et al. A survey on ensemble learning[J]. Frontiers of Computer Science, 2020, 14(2): 241-258. doi: 10.1007/s11704-019-8208-z
    [12] WEBB G I, ZHENG Z. Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(8): 980-991. doi: 10.1109/TKDE.2004.29
    [13] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. doi: 10.1023/A:1018054314350
    [14] SCORNET E, BIAU G. A random forest guided tour[J]. Test, 2016, 25(2): 197-227. doi: 10.1007/s11749-016-0481-7
    [15] SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2): 197-227. doi: 10.1023/A:1022648800760
    [16] FRIEDMAN J, HASTIE T, TIBSHIRANI R. The elements of statistical learning[M]. Beijing: World Publishing Corporation, 2009: 1-745.
    [17] 杨欢, 吴震, 张鹏, 等. 侧信道多层感知机攻击中基于贝叶斯优化的超参数寻优[J]. 计算机应用与软件, 2021, 38(5): 323-330.

    YANG H, WU Z, ZHANG P, et al. Bayesian optimization based hyperparameter search in side-channel attacks against multilayer perceptron[J]. Computer Applications and Software, 2021, 38(5): 323-330.
    [18] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 1-248.
    [19] SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms [J]. Advances in Neural Information Processing Systems, 2012: 4.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-22
  • 修回日期:  2025-09-12
  • 录用日期:  2025-09-15
  • 网络出版日期:  2025-11-26

目录

    /

    返回文章
    返回
    服务号
    订阅号