• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MRF方法与重叠网格技术的自航式布放UUV水动力特性研究

金册刚 杨壮滔 张涛 段浩 袁思欢 朱敏 陈伟新

金册刚, 杨壮滔, 张涛, 等. 基于MRF方法与重叠网格技术的自航式布放UUV水动力特性研究[J]. 水下无人系统学报, 2025, 33(6): 1-11 doi: 10.11993/j.issn.2096-3920.2025-0109
引用本文: 金册刚, 杨壮滔, 张涛, 等. 基于MRF方法与重叠网格技术的自航式布放UUV水动力特性研究[J]. 水下无人系统学报, 2025, 33(6): 1-11 doi: 10.11993/j.issn.2096-3920.2025-0109
JIN Cegang, YANG Zhuangtao, ZHANG Tao, DUAN Hao, Yuan Sihuan, Zhu Min, CHEN Weixin. Research on Hydrodynamic Characteristics of Self-separation Deploying UUV Based on MRF and Overset Mesh[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0109
Citation: JIN Cegang, YANG Zhuangtao, ZHANG Tao, DUAN Hao, Yuan Sihuan, Zhu Min, CHEN Weixin. Research on Hydrodynamic Characteristics of Self-separation Deploying UUV Based on MRF and Overset Mesh[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0109

基于MRF方法与重叠网格技术的自航式布放UUV水动力特性研究

doi: 10.11993/j.issn.2096-3920.2025-0109
基金项目: 翱翔重点实验室基金项目资助.
详细信息
    作者简介:

    金册刚(2000- ), 男, 在读硕士, 主要研究方向为水下航行器总体技术

  • 中图分类号: O351.2; U675.5+5

Research on Hydrodynamic Characteristics of Self-separation Deploying UUV Based on MRF and Overset Mesh

  • 摘要: 基于雷诺平均方程(RANS)方法, 耦合多重参考系(MRF)模型与重叠网格技术, 建立适用于自航式布放UUV等双体分离问题的数值计算方法。针对自航式布放UUV的水动力特性, 选取多个定常工况, 对比分析了典型回转体UUV在布放状态与自由状态下的水动力特性差异。研究表明: 在布放装置尾流场下UUV受到显著的干扰, 包含阻力系数、升力系数和俯仰力矩系数在内的位置力系数变化在7.12%~343.04%, 旋转力系数变化在22.81%~97.16%, 操舵力系数变化在11.83%~164.98%, 操纵性对比自由状态显著减弱。文中通过分析自航式布放UUV水动力特性的变化, 揭示尾流场干扰特性, 能为布放方案的优化和控制策略设计提供一定理论依据。

     

  • 图  1  带重叠网格的多重参考系

    Figure  1.  Multiple reference frames with overlapping grids

    图  2  移动参考系下的速度云图

    Figure  2.  Velocity scalar scene of moving reference

    图  3  固定参考系下的速度云图

    Figure  3.  Velocity scalar scene of fixed reference

    图  4  典型回转体UUV的计算网格

    Figure  4.  Computational grids of typical revolved UUV

    图  5  各项位置力系数绝对值对比

    Figure  5.  comparison of absolute values of position force coefficients for each term

    图  6  无因次角速度下的各项旋转力系数绝对值对比

    Figure  6.  comparison of absolute values of rotational force coefficients for each term under dimensionless angular velocity

    图  7  各项操舵力系数绝对值对比

    Figure  7.  comparison of absolute values of steering force coefficients for each term

    图  8  布放状态下的计算网格

    Figure  8.  Computational grids of the deployment state

    图  16  UUV在一定攻角下的受力分析图

    Figure  16.  Force analysis of UUV with a certain angle of attack

    图  9  典型UUV分离过程的速度衰减曲线

    Figure  9.  Speed attenuation curve of the process typical UUV separating

    图  10  SUBOFF母平台和布放装置的全局尾流场

    Figure  10.  Entire wake field of SUBOFF platform and the deployment device

    图  11  布放装置的尾流场

    Figure  11.  wake field of the deployment device

    图  12  流速1.028m/s以上的尾流场

    Figure  12.  Field possessing wake velocity higher than 1.028 m/s

    图  13  各项位置力系数对比

    Figure  13.  comparison of position force coefficients for each term

    图  14  布放状态攻角变化下的压力云图

    Figure  14.  Pressure scalar scene under the variation of attack angle in the deployment state

    图  15  α=0时布放装置出口的压力云图

    Figure  15.  Pressure scalar scene of the deployment device outlet when α = 0

    图  17  α=4°时布放状态的压力云图

    Figure  17.  Pressure scalar scene of the deployment state when α = 4°

    图  18  α=8°时布放状态的压力云图

    Figure  18.  Pressure scalar scene of the deployment state when α = 8°

    图  22  无因次角速度为0.436时自由状态的速度云图

    Figure  22.  Velocity scalar scene of the deployment state when dimensionless angular velocity coefficient is 0.436

    图  20  无因次角速度为0.436时布放状态的压力云图

    Figure  20.  Pressure scalar scene of the deployment state when dimensionless angular velocity coefficient is 0.436

    图  21  无因次角速度为0.436时自由状态的速度云图

    Figure  21.  Velocity scalar scene of the free state when dimensionless angular velocity coefficient is 0.436

    图  23  各项操舵力系数绝对值对比

    Figure  23.  comparison of absolute values of steering force coefficients for each term

    图  24  舵偏角为25°时自由状态的速度云图

    Figure  24.  Velocity scalar scene of the free state when angle of rudders is 25°

    图  25  舵偏角为25°时布放状态的速度云图

    Figure  25.  Velocity scalar scene of the deployment state when angle of rudders is 25°

    表  1  位置力系数与力矩系数的仿真误差

    Table  1.   Simulation errors of position force coefficient and moment force coefficient

    攻角/(°) 阻力系数
    误差/%
    升力系数
    误差/%
    俯仰力矩
    系数误差/%
    0 3.12 9.03 5.59
    2 2.28 9.85 1.66
    4 2.47 1.12 5.56
    6 3.99 8.57 0.95
    8 5.97 6.36 4.82
    10 7.61 4.82 9.23
    下载: 导出CSV

    表  2  旋转力仿真相关参数

    Table  2.   Simulation parameters of rotational force

    无因次角速度半径/m角速度/(rad/s)切向速度/(m/s)
    0.21825.260.143.53
    0.29118.950.193.53
    0.36315.140.233.53
    0.43612.640.283.53
    下载: 导出CSV

    表  3  旋转力系数与力矩系数的仿真误差

    Table  3.   Simulation errors of rotation force coefficient and moment force coefficient

    无因次角速度 阻力系数
    误差/%
    升力系数
    误差/%
    俯仰力矩
    系数误差/%
    0.218 4.17 7.72 3.21
    0.291 5.48 3.23 1.35
    0.363 3.70 4.91 3.84
    0.436 7.69 6.59 4.85
    下载: 导出CSV

    表  4  操舵力系数与力矩系数的仿真误差

    Table  4.   Simulation errors of steering force coefficient and moment force coefficient

    舵偏角
    /(°)
    阻力系数
    误差/%
    升力系数
    误差/%
    俯仰力矩
    系数误差/%
    舵法向力
    系数误差/%
    铰链力距
    系数误差/%
    0 2.35 2.16 1.42 8.39 4.24
    5 4.45 2.43 5.42 6.23 9.49
    10 4.55 7.81 8.07 6.36 5.36
    15 3.35 8.91 9.56 5.43 1.71
    20 2.07 4.28 4.93 7.12 3.19
    25 2.22 8.46 8.97 7.63 4.34
    下载: 导出CSV

    表  5  部分尾流场等值分层的截面尺寸

    Table  5.   Partially stratified cross-sectional dimensions of the wake field

    速度/(m/s)横平面尺寸/m纵平面尺寸/m
    0.26155.21×1.35117.29×1.21
    0.5152.13×0.9617.44×1.10
    0.6431.51×0.6311.17×0.93
    0.7720.76×0.498.74×0.77
    1.035.94×0.415.62×0.69
    下载: 导出CSV

    表  6  布放与自由状态对比的位置力和力矩系数变化

    Table  6.   Errors of position force coefficient and moment coefficient between deployment and free state

    攻角/(°) 阻力系数
    变化/%
    升力系数
    变化/%
    俯仰力矩
    系数变化/%
    −10 37.61 29.45 14.19
    −8 21.43 58.51 37.38
    −6 32.92 31.30 69.03
    −4 90.12 40.68 18.68
    −2 221.25 13.64 45.22
    0 343.04 231.75 960.00
    2 241.25 36.36 20.25
    4 92.59 47.46 23.24
    6 82.93 36.52 74.99
    8 17.86 37.77 30.85
    10 43.35 32.73 7.12
    下载: 导出CSV

    表  7  布放与自由状态对比的旋转力和力矩系数变化

    Table  7.   Errors of rotation force coefficient and moment coefficient between deployment and free state

    无因次角速度 阻力系数
    变化/%
    升力系数
    变化/%
    俯仰力矩
    系数变化/%
    −0.436 74.82 26.18 39.98
    −0.363 75.17 30.58 41.37
    −0.291 87.76 24.34 52.18
    −0.218 85.33 38.99 52.30
    0.218 86.00 32.70 47.11
    0.291 89.12 22.12 49.27
    0.363 73.10 31.62 42.51
    0.436 72.66 25.63 39.04
    下载: 导出CSV

    表  8  布放与自由状态对比的操舵力和力矩系数变化

    Table  8.   Errors of steering force coefficient and moment coefficient between deployment and free state

    舵偏角/(°)阻力系数变化/%升力系数变化/%俯仰力矩
    系数变化/%
    舵法向力
    系数变化/%
    铰链力距
    系数变化/%
    080.88257.14292.161900.00900.00
    583.8644.0818.9836.2511.83
    1073.0830.3338.0722.6226.23
    1557.2536.9432.8427.0738.50
    2042.8235.4035.9426.7278.61
    2531.8632.5128.2329.99164.98
    下载: 导出CSV
  • [1] 孟令帅, 李明烁, 林扬, 等. 自主水下机器人布放回收技术综述[J]. 无人系统技术, 2024, 7(1): 1-19.

    MENG L S, LI M S, LIN Y, et al. Launch and recovery technology of autonomous underwater vehicle[J]. Unmanned Systems Technology, 2024, 7(1): 1-19.
    [2] 朱炜, 张大中, 孙明月. 国外超大型无人潜航器发展研究[J]. 舰船科学技术, 2024, 46(24): 186-189.

    ZHU W, ZHANG D Z, SUN M Y. Research on the development of foreign extra large unmanned underwater vehicles[J]. Ship Science and Technology, 2024, 46(24): 186-189.
    [3] LUNDQUIST E . Bluefin robotics: Celebrating 25 years of UUVs[J]. Ocean News & Technology, 2023, 46-48.
    [4] GRIGORY P. K , IVAN N B . UUV launch/recovery moonpool aboard ships: arrangement peculiarities[J]. Transactions of the Krylov State Research Centre, 2019, 3(389): 95-102.
    [5] 孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1-11.

    SUN Y Y, WU H W, LI Y, et al. Summary of AUV underwater recycle docking technology[J]. Journal of Harbin Engineering University, 2019, 40(1): 1-11.
    [6] 王钊, 樊鹏, 王福新, 等. 空中加受油安全对接控制验证要素分析[J]. 航空工程进展, 2020, 11(3): 408-413,442.

    WANG Z, FAN P, WANG F X, et al. Analysis of verification elements of safety docking control for air refueling[J]. Advances in Aeronauticai Science and Engineering, 2020, 11(3): 408-413,442.
    [7] SERHAT Y; GÜLTEN A Y. Identification of particular hydrodynamic parameters for a modular type 4 DOF underwater vehicle by means of CFD method[J]. The Industrial Robot, 2023, 50(4): 609-622. doi: 10.1108/IR-09-2021-0206
    [8] HUSSAIN B , HUSSAIN A , QURESHI A M, et al. CFD study for the effect of eyebrow forward planes on dynamic stability of unmanned underwater vehicle with different stern forms[J]. Marine Systems & Ocean Technology, 2025, 20(2): 24-24.
    [9] HOU Y , DUAN F, ZHU W, et al. Time-sequenced hydrodynamics prediction system for underwater vehicles based on AI edge computing[J]. Ocean Engineering, 2024, 294, 116797-116797.
    [10] 杨壮滔, 张镇, 何文生, 等. 水下无人平台动态布放UUV过程水动力特性[J]. 水下无人系统学报, 2022, 30(1): 115-121.

    YANG Z T, ZHANG Z, HE W S, et al. Hydrodynamic characteristics of UUV during dynamic deployment process of underwater unmanned platform[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 115-121.
    [11] 张大朋, 严谨, 赵博文. 基于静态重叠网格法的全附体潜艇的斜航仿真[J]. 计算机仿真, 2023, 40(5): 25-31.

    ZHANG D P, YAN J, ZHAO B W. Numerical simulation of full appended submarine in drift process based on static overset grid method[J]. Computer Simulation, 2023, 40(5): 25-31.
    [12] 张涛, 杨晨俊, 宋保维. 基于MRF模型的对转桨敞水性能数值模拟方法探讨[J]. 船舶力学, 2010, 14(8): 847-853.

    ZHANG T, YANG C J SONG B W. Investigations on the numerical simulation method for the open-water performance of contra-rotating propellers based on the MRF model[J]. Journal of Ship Mechanics, 2010, 14(8): 847-853.
    [13] FONSECA P R , FONTOURA V D , et al. Development of a machine learning-based symbolic regression model for mixing time in large petroleum storage tanks[J]. Chemical Engineering Science, 2025, 316: 121903-121903.
    [14] 杨林家, 方舒杨. 基于FLUENT的弯曲方管网格无关性验证[J]. 北部湾大学学报, 2023, 38(2): 63-69.

    YANG L J, FANG S Y. Grid-independence verification of curved square tube based on FLUENT[J]. Journal of Beibu Gulf University 2023, 38(2): 63-69.
    [15] 詹致祥. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 1990.
    [16] HOBSON B W , BELLINGHAM J G , KIEFT B , et al. Tethys-class long range AUVs - extending the endurance of propeller-driven cruising AUVs from days to weeks[C]//2012 IEEE/OES Autonomous Underwater Vehicles(AUV). Southampton, UK: IEEE, 2012: 1-8
    [17] 段浩. 鱼雷发射技术[M]. 北京: 国防工业出版社, 2015.
    [18] 李博, 莫军. 海流对水下运载器航行安全的影响评估[J]. 舰船科学技术, 2012, 34(8): 31-34.

    LI B, MO J. Evaluation of ocean current impacting on the navigational safety of the underwater carries machine[J]. Ship Science and Technology, 2012, 34(8): 31-34.
  • 加载中
图(24) / 表(8)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-22
  • 修回日期:  2025-09-15
  • 录用日期:  2025-09-26
  • 网络出版日期:  2025-11-18

目录

    /

    返回文章
    返回
    服务号
    订阅号