Design and Application Progress of Biomimetic Seal Whisker Sensors for Underwater Flow Field Sensing
-
摘要: 海洋环境感知, 尤其是水下流场的高精度感知技术, 在海洋资源勘探、自主水下航行器(AUV)作业及国防安全等领域具有关键意义。然而, 在低能见度和复杂背景扰动下传统光学与声学感知手段在性能与适应性上均面临严峻挑战。海豹胡须的波浪状几何结构能够显著抑制背景流场产生的涡激振动、提升信噪比, 毛囊窦复合体则赋予其对微弱扰动的高灵敏检测能力, 仿海豹胡须感知技术被视为突破现有感知技术瓶颈的重要方向。本文系统回顾了该技术领域的发展现状, 重点包括: 海豹胡须感知机理的生物学基础; 基于光学、电阻、电容、压电与摩擦电等原理的仿生胡须结构设计、材料选型与性能优化策略; 以及其在固定平台和水下移动平台中的典型应用与实证效果。最后, 归纳了仿海豹胡须感知技术在稳定性、微型化与信号处理等方面面临的主要挑战, 旨在为流场仿生感知技术的理论研究与工程实践提供系统参考与技术支撑。Abstract: Marine environment sensing, especially high-precision underwater flow field sensing, is vital for marine resource exploration, autonomous undersea vehicle(AUV) operations, and national defense. However, under low visibility and complex disturbances, conventional optical and acoustic sensing methods face severe limitations in performance and adaptability. Seal whiskers’ undulated geometry suppresses vortex-induced vibrations(VIVs) and enhances signal-to-noise ratio(SNR), while the follicle-sinus complex(FSC) enables sensitive detection of subtle hydrodynamic cues. Biomimetic whisker sensors have emerged as a promising solution to current bottlenecks in sensing technologies. This review systematically summarized recent progress in this field, covering the biological sensing principles of seal whiskers, as well as the design strategies, material choices, and performance optimization of biomimetic sensors based on optical, resistive, capacitive, piezoelectric, and triboelectric mechanisms. Representative applications and effects on fixed and mobile platforms were discussed, followed by an overview of challenges in stability, miniaturization, and signal processing. This work aims to provide a systematic reference and technical support for the theoretical research and engineering practice of biomimetic flow sensing technologies.
-
表 1 各类仿海豹胡须传感器特点对比
Table 1. Comparison of features among various seal-whisker-inspired sensors
类型 感知机理 优势 不足 典型适用场景 光学式 光纤干涉、图像识别 高灵敏度、高分辨率、
抗电磁干扰结构复杂, 难以小型化,
信号处理要求高精细流场监测、高分辨率应用、静态监测 电阻式 电阻变化(导电材料) 结构简单、低成本、
易阵列化非线性响应、湿度敏感 大规模阵列部署、低成本传感器
网络、短期监测电容式 电容变化 高灵敏度、低功耗、
稳定性好寄生电容、阵列元件间串扰、电磁干扰 多通道阵列、静态监测、高精度测量 压电式 压电效应(机电耦合) 高灵敏度、自供能、
响应迅速低电平输出、低频响应不足 水下扰动感知、能量受限平台、
自驱动系统摩擦电 摩擦电效应(静电感应) 自供能、成本低、
低频响应强耐磨性差、信号衰减、环境稳定性差 微弱扰动感知、低频应用、自驱动系统 -
[1] 蔡荣捷. 海洋技术的进展: 从声学突破到生物拟态工程的应用[J]. 科学咨询, 2025(1): 51-54.CAI R J. Advances in marine technology: From acoustic breakthroughs to application of biomimetics[J]. Scientific Consult, 2025(1): 51-54. [2] 张宇, 王昊, 相城, 等. 面向观测网络供电的水下能量捕获技术研究进展[J]. 水下无人系统学报, 2023, 31(1): 86-107.ZHANG Y, WANG H, XIANG C, et al. Recent progress on underwater energy harvesting technology for powering observation networks[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 86-107. [3] 周正干, 李文涛, 李洋, 等. 相控阵超声水浸C扫描自动检测系统的研制[J]. 机械工程学报, 2017, 53(12): 28-34. doi: 10.3901/JME.2017.12.028ZHOU Z G, LI W T, LI Y, et al. Development of ultrasonic phased array immersion C-scan automatic detection system[J]. Journal of Mechanical Engineering, 2017, 53(12): 28-34. doi: 10.3901/JME.2017.12.028 [4] 吴青山, 翁俊杰, 郭斯琳, 等. 水下仿生柔性传感技术在流场感知中的进展与挑战[J]. 测控技术, 2024, 43(10): 1-9,16.WU Q S, WENG J J, GUO S L, et al. Progress and challenges of underwater biomimetic flexible sensing tecchnology in flow field perception[J]. Measurement & Control Technology, 2024, 43(10): 1-9,16. [5] 谢鸥, 孙兆光, 沈灿, 等. 基于仿鱼人工侧线的水下静态目标主动感知方法研究[J]. 传感技术学报, 2024, 37(10): 1786-1794.XIE O, SUN Z G, SHEN C, et al. Study on the underwater static target active perception method based in fish-like artificial lateral line[J]. Chinese Journal of Sensors and Actuators, 2024, 37(10): 1786-1794. [6] KRIEG M, NELSON K, MOHSENI K. Distributed sensing for fluid disturbance compensation and motion control of intelligent robots[J]. Nature Machine Intelligence, 2019, 1(5): 216-224. doi: 10.1038/s42256-019-0044-1 [7] BLECKMANN H, KLEIN A, MEYER G. Nature as a model for technical sensors[M]. Vienna: Springer, 2012: 3-18. [8] TRIANTAFYLLOU M S, WEYMOUTH G D, MIAO J. Biomimetic survival hydrodynamics and flow sensing[J]. Annual Review of Fluid Mechanics, 2016, 48: 1-24. doi: 10.1146/annurev-fluid-122414-034329 [9] KROESE A B, VAN J M, VAN D B J. Frequency response of the lateral-line organ of xenopus laevis[J]. Pflügers Archiv, 1978, 375(2): 167-175. [10] SOARES D. An ancient sensory organ in crocodilians[J]. Nature, 2002, 417(6886): 241-242. doi: 10.1038/417241a [11] WILLIAMS T M, KOOYMAN G L. Swimming performance and hydrodynamic characteristics of harbor seals phoca vitulina[J]. Physiological Zoology, 1985, 58(5): 576-589. doi: 10.1086/physzool.58.5.30158584 [12] PERRIN W F, WÜRSIG B, THEWISSEN J G M. Encyclopedia of marine mammals[M]. Pittsburgh: Academic Press, 2009. [13] KOTTAPALLI A G P, ASADNIA M, MIAO J, et al. Biomimetic microsensors inspired by marine life[M]. Cham, Switzerland: Springer Cham, 2016. [14] DEHNHARDT G, MAUCK B, BLECKMANN H. Seal whiskers detect water movements[J]. Nature, 1998, 394(6690): 235-236. doi: 10.1038/28303 [15] 马峰, 张静骁, 贾曦雨, 等. 基于水下运动目标流场信息的仿生探测原理[J]. 水下无人系统学报, 2014, 22(6): 436-441.MA F, ZHANG J X, JIA X Y, et al. Principle of biomimetic detection based on flow field information of underwater moving object[J]. Journal of Unmanned Undersea Systems, 2014, 22(6): 436-441. [16] 翟宇凡, 熊明磊, 王晨, 等. 水下仿生侧线感知研究进展[J]. 水下无人系统学报, 2023, 31(1): 50-67.ZHAI Y F, XIONG M L, WANG C, et al. A review on underwater perception based on bio-inspired artificial lateral line system[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 50-67. [17] 胡桥, 刘钰, 赵振轶, 等. 水下无人集群仿生人工侧线探测技术研究进展[J]. 水下无人系统学报, 2019, 27(2): 114-122.HU Q, LIU Y, ZHAO Z Y, et al. Research advances of biomimetic artificial lateral line detection technology for unmanned underwater swarm[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 114-122. [18] BEEM H R, TRIANTAFYLLOU M S. Wake-induced ‘slaloming’ response explains exquisite sensitivity of seal whisker-like sensors[J]. Journal of Fluid Mechanics, 2015, 783: 306-322. doi: 10.1017/jfm.2015.513 [19] MUTHURAMALINGAM M, BRUECKER C. Seal and sea lion whiskers detect slips of vortices similar as rats sense textures[J]. Scientific Reports, 2019, 9(1): 12808. doi: 10.1038/s41598-019-49243-5 [20] 李原正, 王天润, 关堂镇, 等. 基于液态金属型摩擦纳米发电的水下仿生触须传感器[J]. 水下无人系统学报, 2024, 32(5): 794-800.LI Y Z, WANG T R, GUAN T Z, et al. Underwater biomimetic whisker sensor based on liquid metal and triboelectric nanogenerator[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 794-800. [21] DIAMOND M E, ARABZADEH E. Whisker sensory system – from receptor to decision[J]. Progress in Neurobiology, 2013, 103: 28-40. doi: 10.1016/j.pneurobio.2012.05.013 [22] PRESCOTT T J, DIAMOND M E, WING A M. Active touch sensing[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1581): 2989-2995. doi: 10.1098/rstb.2011.0167 [23] AU W W L, BENOIT-BIRD K J, KASTELEIN R A. Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises[J]. The Journal of the Acoustical Society of America, 2007, 121(6): 3954-3962. doi: 10.1121/1.2734487 [24] NEWBY T C, HART F M, ARNOLD R A. Weight and Blindness of Harbor Seals[J]. Journal of Mammalogy, 1970, 51(1): 152. [25] HYVÄRINEN H. Diving in darkness: Whiskers as sense organs of the ringed seal(Phoca hispida saimensis)[J]. Journal of Zoology, 1989, 218(4): 663-678. doi: 10.1111/j.1469-7998.1989.tb05008.x [26] RENOUF D. Fishing in captive harbour seals (phoca vitulina concolor): A possible role for vibrissae[J]. Netherlands Journal of Zoology, 1979, 30(3): 504-509. doi: 10.1163/002829680X00122 [27] RENOUF D. Preliminary measurements of the sensitivity of the vibrissae of harbour seals(Phoca vitulina) to low frequency vibrations[J]. Journal of Zoology, 1979, 188(4): 443-450. doi: 10.1111/j.1469-7998.1979.tb03428.x [28] DEHNHARDT G, MAUCK B, HANKE W, et al. Hydrodynamic trail-following in harbor seals(Phoca vitulina)[J]. Science, 2001, 293(5527): 102-104. doi: 10.1126/science.1060514 [29] SCHULTE-PELKUM N, WIESKOTTEN S, HANKE W, et al. Tracking of biogenic hydrodynamic trails in harbour seals(Phoca vitulina)[J]. Journal of Experimental Biology, 2007, 210(5): 781-787. doi: 10.1242/jeb.02708 [30] HANKE W, WITTE M, MIERSCH L, et al. Harbor seal vibrissa morphology suppresses vortex-induced vibrations[J]. Journal of Experimental Biology, 2010, 213(15): 2665-2672. doi: 10.1242/jeb.043216 [31] SMODLAKA H, GALEX I, PALMER L, et al. Ultrastructural, sensory and functional anatomy of the northern elephant seal(Mirounga angustirostris) facial vibrissae[J]. Anatomia, Histologia, Embryologia, 2017, 46(5): 487-496. doi: 10.1111/ahe.12293 [32] ZHANG P, WANG S, JIANG J, et al. A fiber-optic extrinsic fabry–perot hydrophone based on archimedes spiral-type sensitive diaphragm[J]. IEEE Sensors Journal, 2022, 22(23): 22654-22660. doi: 10.1109/JSEN.2022.3215157 [33] ZHAO C, JIANG Q, LI Y. A novel biomimetic whisker technology based on fiber Bragg grating and its application[J]. Measurement Science and Technology, 2017, 28(9): 095104. doi: 10.1088/1361-6501/aa7d36 [34] KENT T A, KIM S, KORNILOWICZ G, et al. WhiskSight: A reconfigurable, vision-based, optical whisker sensing array for simultaneous contact, airflow, and inertia stimulus detection[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3357-3364. doi: 10.1109/LRA.2021.3062816 [35] WANG J, YANG X, WANG A, et al. Bio-inspired fiber attitude sensor for direction-distinguishable pitching and rolling sensing[J]. Journal of Lightwave Technology, 2023, 41(21): 6844-6851. doi: 10.1109/JLT.2023.3294956 [36] WANG J, WANG A, NIU C, et al. Bioinspired whisker sensor based on orthometric FBGs for underwater applications[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-9. [37] ZHANG Y, YAN S, WEI Z, et al. A small-scale, rat-inspired whisker sensor for the perception of a biomimetic robot: Design, fabrication, modeling, and experimental characterization[J]. IEEE Robotics & Automation Magazine, 2022, 29(4): 115-126. [38] AHMAD RIDZUAN N A, MIKI N. Tooth-inspired tactile sensor for detection of multidirectional force[J]. Micromachines, 2019, 10(1): 18. [39] XIE R, ZHU J, WU H, et al. 3D-conductive pathway written on leather for highly sensitive and durable electronic whisker[J]. Journal of Materials Chemistry C, 2020, 8(28): 9748-9754. doi: 10.1039/D0TC00786B [40] LIN C W, ZHAO Z, KIM J, et al. Pencil drawn strain gauges and chemiresistors on paper[J]. Scientific Reports, 2014, 4(1): 3812. doi: 10.1038/srep03812 [41] WAKABAYASHI S, YAMAGUCHI T, ARIE T, et al. Out-of-plane electric whiskers based on nanocarbon strain sensors for multi-directional detection[J]. Carbon, 2020, 158: 698-703. doi: 10.1016/j.carbon.2019.11.042 [42] ZHENG X, KAMAT A M, KRUSHYNSKA A O, et al. 3D printed graphene piezoresistive microelectromechanical system sensors to explain the ultrasensitive wake tracking of wavy seal whiskers[J]. Advanced Functional Materials, 2022, 32(47): 2207274. doi: 10.1002/adfm.202207274 [43] VALDIVIA Y ALVARADO P, SUBRAMANIAM V, TRIANTAFYLLOU M. Design of a bio-inspired whisker sensor for underwater applications[C]//2012 IEEE SENSORS. Taipei, China: IEEE, 2012: 1-4. [44] HUA Q, LIU H, ZHAO J, et al. Bioinspired electronic whisker arrays by pencil-drawn paper for adaptive tactile sensing[J]. Advanced Electronic Materials, 2016, 2(7): 1600093. doi: 10.1002/aelm.201600093 [45] LIU Z, QI D, LEOW W R, et al. 3D-structured stretchable strain sensors for out-of-plane force detection[J]. Advanced Materials, 2018, 30(26): 1707285. doi: 10.1002/adma.201707285 [46] DUSEK J E, TRIANTAFYLLOU M S, LANG J H. Piezoresistive foam sensor arrays for marine applications[J]. Sensors and Actuators A: Physical, 2016, 248: 173-183. doi: 10.1016/j.sna.2016.07.025 [47] STOCKING J B, EBERHARDT W C, SHAKHSHEER Y A, et al. A capacitance-based whisker-like artificial sensor for fluid motion sensing[C]//2010 IEEE Sensors. Waikoloa, USA: IEEE, 2010: 2224-2229. [48] ASSAF T, ROSSITER J, PEARSON M. Contact sensing in a bio-inspired whisker driven by electroactive polymer artificial muscles[C]//2013 IEEE Sensors. Baltimore, USA: IEEE, 2013: 1-4. [49] FEND M, BOVET S, HAFNER V V. The artificial mouse - a robot with whiskers and vision[C]//Proceedings of the 35th International Symposium on Robotics(ISR 2004). Paris, France: International Federation of Robotics 2004, 2004. [50] EBERHARDT W C, WAKEFIELD B F, MURPHY C T, et al. Development of an artificial sensor for hydrodynamic detection inspired by a seal’s whisker array[J]. Bioinspiration & Biomimetics, 2016, 11(5): 056011. [51] DROOGENDIJK H, BRUININK C M, SANDERS R G P, et al. Non-resonant parametric amplification in biomimetic hair flow sensors: Selective gain and tunable filtering[J]. Applied Physics Letters, 2011, 99(21): 213503. doi: 10.1063/1.3663865 [52] DELAMARE J, SANDERS R, KRIJNEN G. 3D printed biomimetic whisker-based sensor with co-planar capacitive sensing[C]//2016 IEEE Sensors. Orlando, USA: IEEE, 2016: 1-3. [53] JIANG Y, LI J, WANG Z, et al. Design and fabrication of an E-whisker using a PVDF ring[J]. Bioinspiration & Biomimetics, 2021, 16(3): 036007. [54] BEBEK O, CAVUSOGLU M C. Whisker-like position sensor for measuring physiological motion[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(5): 538-547. doi: 10.1109/TMECH.2008.2001184 [55] KOTTAPALLI A G P, ASADNIA M, MIAO J M, et al. Harbor seal whisker inspired flow sensors to reduce vortex-induced vibrations[C]//2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Estoril, Portugal: IEEE, 2015: 889-892. [56] JIANG Y, GUO C, ZHANG Y, et al. Design and fabrication of a four-electrodes PVDF fiber for a flow sensor[J]. IEEE Sensors Journal, 2023, 23(3): 1982-1989. doi: 10.1109/JSEN.2022.3230718 [57] GUO L, LIU J, WU G, et al. Piezoelectric wavy whisker sensor for perceiving underwater vortex from a bluff body[J]. Sensors and Actuators A: Physical, 2024, 365: 114875. doi: 10.1016/j.sna.2023.114875 [58] JU F, LING S F. Sensing fluid viscosity and density through mechanical impedance measurement using a whisker transducer[J]. Measurement Science and Technology, 2013, 24(5): 055105. doi: 10.1088/0957-0233/24/5/055105 [59] WANG D, LI Y, HU X, et al. Electrohydrodynamic jet printed bioinspired piezoelectric hair-like sensor for high-sensitivity air-flow detection[J]. Smart Materials and Structures, 2023, 32(9): 095020. doi: 10.1088/1361-665X/acec21 [60] WANG X, XU P, MA Z, et al. A bio-inspired whisker sensor based on triboelectric nanogenerators[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation(YAC). Zhanjiang, China: IEEE, 2020: 105-109. [61] WANG X, XU P, LIU J, et al. Semi-flexible bionic whisker sensor based on triboelectric nanogenerators[C]//2021 International Conference on Artificial Intelligence and Electromechanical Automation(AIEA). Guangzhou, China: IEEE, 2021: 194-198. [62] PUNEETHA P, MALLEM S P R, PARK S C, et al. Ultra-flexible graphene/nylon/PDMS coaxial fiber-shaped multifunctional sensor[J]. Nano Research, 2023, 16(4): 5541-5547. doi: 10.1007/s12274-022-5235-0 [63] YU A, CHEN L, CHEN X, et al. Triboelectric sensor as self-powered signal reader for scanning probe surface topography imaging[J]. Nanotechnology, 2015, 26(16): 165501. doi: 10.1088/0957-4484/26/16/165501 [64] XU P, WANG X, WANG S, et al. A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping[J]. Research, 2021, 2021: 9864967. [65] LIU J, XU P, ZHENG J, et al. Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance[J]. Nano Energy, 2022, 101: 107633. doi: 10.1016/j.nanoen.2022.107633 [66] AU W W L, BENOIT-BIRD K J, KASTELEIN R, et al. Acoustic basis for fish prey selection by echolocating odontocetes[J]. The Journal of the Acoustical Society of America, 2004, 116(4_Supplement): 2503-2504. [67] BEEM H, HILDNER M, TRIANTAFYLLOU M. Calibration and validation of a harbor seal whisker-inspired flow sensor[J]. Smart Materials and Structures, 2012, 22(1): 014012. [68] KOTTAPALLI A G P, ASADNIA M, HANS H, et al. Harbor seal inspired MEMS artificial micro-whisker sensor[C]//2014 IEEE 27th International Conference on Micro Electro Mechanical Systems(MEMS). San Francisco, USA: IEEE, 2014: 741-744. [69] ALVARADO P V, SUBRAMANIAM V, TRIANTAFYLLOU M. Performance analysis and characterization of bio-inspired whisker sensors for underwater applications[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013: 5956-5961. [70] FRIES F, VALDIVIA Y ALVARADO P. Whisker-like sensors with soft resistive follicles[C]//2017 IEEE International Conference on Robotics and Biomimetics(ROBIO). Macau, China: IEEE, 2017: 2038-2043. [71] WIESKOTTEN S, DEHNHARDT G, MAUCK B, et al. Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal(Phoca vitulina)[J]. Journal of Experimental Biology, 2010, 213(13): 2194-2200. doi: 10.1242/jeb.041699 [72] GUL J Z, SU K Y, CHOI K H. Fully 3D printed multi-material soft bio-inspired whisker sensor for underwater-induced vortex detection[J]. Soft Robotics, 2018, 5(2): 122-132. doi: 10.1089/soro.2016.0069 [73] KAMAT A M, PEI Y, KOTTAPALLI A G P. Bioinspired cilia sensors with graphene sensing elements fabricated using 3D printing and casting[J]. Nanomaterials, 2019, 9(7): 954. doi: 10.3390/nano9070954 [74] KAMAT A M, ZHENG X, JAYAWARDHANA B, et al. Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica moulding[J]. Nanotechnology, 2020, 32(9): 095501. [75] KAIDAROVA A, KHAN M A, MARENGO M, et al. Wearable multifunctional printed graphene sensors[J]. NPJ Flexible Electronics, 2019, 3(1): 1-10. doi: 10.1038/s41528-018-0045-x [76] HONING T V D. The 3D printing of a bio-inspired flow sensor system[D]. Groningen, Netherlands: University of Groningen, 2023. [77] ZHANG X, SHAN X, XIE T, et al. Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity[J]. Measurement, 2021, 172: 108866. doi: 10.1016/j.measurement.2020.108866 [78] LIU G, JIANG Y, WU P, et al. Artificial whisker sensor with undulated morphology and self-spread piezoresistors for diverse flow analyses[J]. Soft Robotics, 2023, 10(1): 97-105. doi: 10.1089/soro.2021.0166 [79] EBERHARDT W C, SHAKHSHEER Y A, CALHOUN B H, et al. A bio-inspired artificial whisker for fluid motion sensing with increased sensitivity and reli- ability[C]//2011 IEEE Sensors. Limerick, Ireland: IEEE, 2011: 982-985. [80] WANG T, KENT T A, BERGBREITER S. Design of whisker-inspired sensors for multi-directional hydrodynamic sensing[EB/OL]. [2023-07-14]. https://arxiv.org/abs/. [81] 王森, 徐贺, 孔德义, 等. 仿海豹胡须阵列检测水中运动目标尾流特征[J]. 哈尔滨工业大学学报, 2022, 54(6): 63-71.WANG S, XU H, KONG D Y, et al. Detecting wake characteristics of moving targets in water by bio-inspired seal whisker array[J]. Journal of Harbin Institute of Technology, 2022, 54(6): 63-71. [82] WANG S, XU P, WANG X, et al. Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception[J]. Nano Energy, 2022, 97: 107210. doi: 10.1016/j.nanoen.2022.107210 [83] XU P, LIU J, LIU B, et al. Deep-learning-assisted triboelectric whisker for near field perception and online state estimation of underwater vehicle[J]. Nano Energy, 2024, 129: 110011. doi: 10.1016/j.nanoen.2024.110011 -

下载: