• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于多尺度卷积神经网络的水下图像增强算法及边缘端部署

张俊 罗凡 袁政

张俊, 罗凡, 袁政. 一种基于多尺度卷积神经网络的水下图像增强算法及边缘端部署[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0094
引用本文: 张俊, 罗凡, 袁政. 一种基于多尺度卷积神经网络的水下图像增强算法及边缘端部署[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0094
ZHANG Jun, LUO Fan, YUAN Zheng. A multi-scale convolutional neural network based underwater image enhancement algorithm and edge deployment[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0094
Citation: ZHANG Jun, LUO Fan, YUAN Zheng. A multi-scale convolutional neural network based underwater image enhancement algorithm and edge deployment[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0094

一种基于多尺度卷积神经网络的水下图像增强算法及边缘端部署

doi: 10.11993/j.issn.2096-3920.2025-0094
详细信息
    作者简介:

    张俊:张 俊(1995-), 男, 硕士, 工程师, 主要研究方向为图像目标检测与图像增强

  • 中图分类号: TJ630; U67

A multi-scale convolutional neural network based underwater image enhancement algorithm and edge deployment

  • 摘要: 针对水下可见光图像因水体散射、吸收导致的噪声干扰、纹理模糊、颜色失真问题, 以及传统增强算法计算量大且基本耗时长的缺陷, 文中提出一种基于多尺度卷积神经网络的水下图像增强算法。该算法核心设计如下: 一是采用U-Net结构, 融合浅层纹理特征与深层语义特征, 有效恢复图像纹理细节与颜色信息; 二是引入轻量化特征提取模块, 在减少模型参数的同时加快网络收敛速度; 三是在主干网络中嵌入多尺度金字塔池化, 强化多尺度特征提取能力, 弥补传统算法细节恢复不足的短板; 四是采用L1损失与结构相似性损失(SSIM)联合优化, 提升图像亮度与对比度的恢复效果。为满足工程应用低延时需求, 算法经量化后部署于嵌入式平台, 通过调嵌入式神经网络处理器(NPU)资源加速推理, 在Atlas200IA2上的前向推理耗时仅28 ms。公开水下数据集的实验结果表明, 该算法在测试集上的水下图像质量度量(UIQM)与水下彩色图像质量评估(UCIQE)指标分别达到4.33和0.63, 验证了其增强效果的有效性。

     

  • 图  1  网络框架图

    Figure  1.  Network framework diagram

    图  2  FEM模块

    Figure  2.  FEM module

    图  3  MSPPF模块

    Figure  3.  Module ofMSPPF

    图  4  CAM模块具体结构示意图

    Figure  4.  Detailed structure diagram of CAM module

    图  5  算法流程图

    Figure  5.  Algorithm flow chart

    图  6  LSUI数据集增强结果对比图

    Figure  6.  Comparison of LSUI Dataset Augmentation Results

    图  7  UIEB数据集增强结果对比图

    Figure  7.  Comparison of UIEB Dataset Augmentation Results

    表  1  网络参数配置表

    Table  1.   Network parameter configuration table

    参数名参数值
    输入尺寸256×256
    学习率0.001
    批大小64
    权重衰减0.000 5‌
    动量0.937
    下载: 导出CSV

    表  2  不同平台推理耗时

    Table  2.   inference time on different platforms

    平台FP16/(ms)FP16&FP32/(ms)
    RK35884258
    Atlas 200I A22831
    下载: 导出CSV

    表  3  不同算法测试指标

    Table  3.   Test indicators of different algorithms

    算法UIQMUCIQEPSNRSSIM
    CLAHE3.950.5916.670.59
    ICM3.220.4815.840.53
    FUnIE-GAN3.870.5018.280.64
    PhysicalNN4.31‌0.5421.250.72
    Retinex4.080.5319.750.61
    Shallow4.020.4918.050.65
    文中4.330.6325.840.87
    下载: 导出CSV
  • [1] 王永鑫, 刁鸣, 韩闯. 基于同态滤波的水下图像增强与色彩校正模 型[J]. 计算机工程与应用, 2018, 54(11): 30-34.

    WANG Y X, DIAO M, HAN C. Underwater image enhancement and color correction model based on homomorphic filtering[J]. Computer Engineering and Applications, 2018, 54(11): 30-34.
    [2] 李黎, 王惠刚, 刘星. 基于改进暗原色先验和颜色校正的水下图像增强[J]. 光学学报, 2017, 37(12): 9.

    LI L, WANG H G, LIU X. Underwater image enhancement based on improved dark primary prior and color correction[J]. Acta Optica Sinica, 2017, 37(12): 9.
    [3] 杨润, 刘增力, 赵宣植. 基于颜色校正和暗亮双通道先验的水下图像增强算法[J]. 红外技术, 2024, 46(9): 984-993.

    YANG R, LIU Z L, ZHAO X Z. Underwater image enhancement algorithm based on color correction and dual channel prior of brightness and darkness[J]. Infrared Technology, 2024, 46(9): 984-993.
    [4] 王燕, 张金峰, 王丽康, 等. 基于注意力机制与特征重建的水下图像增强[J]. 红外技术, 2024, 46(9): 1006-1014.

    WANG Y, ZHANG J F, WANG L K, et al. Underwater image enhancement based on attention mechanism and feature reconstruction[J]. Infrared Technology, 2024, 46(9): 1006-1014.
    [5] 程竹明, 李佳轩, 黄三傲, 等. 基于多分支残差注意力网络的水下图像增强[J]. 光学精密工程, 2025, 33(7): 1141-1151. doi: 10.37188/OPE.20253307.1141

    CHENG Z M, LI J X, HUANG S A, et al. Underwater image enhancement based on multi branch residual attention network[J]. Optical Precision Engineering, 2025, 33(7): 1141-1151. doi: 10.37188/OPE.20253307.1141
    [6] 王树林, 杨建民, 卢昌宇, 等. 一种基于双通道的水下图像增强卷积神经网络[J]. 海洋工程, 2023, 41(6): 158-170.

    WANG S L, YANG J M, LU C Y, et al. A dual channel underwater image enhancement convolutional neural network[J]. Ocean Engineering, 2023, 41(6): 158-170.
    [7] 严浙平, 曲思瑜, 邢文. 水下图像增强方法研究综述[J]. 智能系统学报, 2022, 17(5): 860-873.

    YAN Z P, QU S Y, XING W. A review of underwater image enhancement methods[J]. Journal of Intelligent Systems, 2022, 17(5): 860-873.
    [8] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 645-657.
    [9] WU Z, SHEN C, VAN DEN HENGEL A. Wider or deeper: Revisiting the resnet model for visual recognition[J]. Pattern Recognition, 2019, 90: 119-133. doi: 10.1016/j.patcog.2019.01.006
    [10] CHEN R C. Automatic license plate recognition via sliding-window darknet-YOLO deep learning[J]. Image and Vision Computing, 2019, 87: 47-56. doi: 10.1016/j.imavis.2019.04.007
    [11] ZHAO C, CHEN M. YOLOv7-RFPCW of a lightweight target detection algorithm for benthic organisms underwater[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(11): 168-177.
    [12] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [13] XU C, DU Y, ZHENG W, et al. Facial expression recognition based on YOLOv8 deep learning in complex scenes[J]. International Journal of Information and Communication Technology, 2025, 26(1): 89-101. doi: 10.1504/IJICT.2025.144013
    [14] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017 : 7132-7141.
    [15] ZHAO D, LIU K, ZHANG Z, et al. Efficient stereo matching using attention mechanism and edge optimization[J]. Journal of Electronic Imaging, 2023, 32(5): 16.
    [16] 黄巧玲, 郑伯川, 丁梓成, 等. 融合监督注意力模块和跨阶段特征融合的图像修复改进网络[J]. 计算机应用, 2024, 44(2): 572-579.

    HUANG Q L, ZHENG B C, DING Z C, et al. Improved image restoration network integrating supervised attention module and cross stage feature fusion[J]. Computer Applications, 2024, 44(2): 572-579.
    [17] ZHANG W D, ZHUANG P X, SUN H H, et al. Underwater image enhancement via minimal color loss and locally adaptive contrast[J]. IEEE Transactions on Image Processing, 2022, 31: 3997-4010. doi: 10.1109/TIP.2022.3177129
    [18] SINGH N, BHAT A. A robust model for improving the quality of underwater images using enhancement techniques[J]. Multimedia tools and Applications, 2024(1): 83.
    [19] 朱恒军, 王天落, 马利浩. 水下图像的颜色校正及对比度增强算法研究[J]. 舰船电子工程, 2023, 43(8): 149-154.

    ZHU H J, WANG T L, MA L H. Research on color correction and contrast enhancement algorithms for underwater images[J]. Ship Electronic Engineering, 2023, 43(8): 149-154
    [20] KASHIF I, SALAM R A, AZAM O, et al. Underwater image enhancement using an integrated colour model[J]. Iaeng International Journal of Computer Science, 2007, 34(2): 239-244.
    [21] TSAI Y S, CHANG K W, LAN Y J. Advancing underwater image clarity: A GAN-based approach with residual blocks and linear blending[J]. Machine Vision and Applications, 2025, 36(4): 1-22.
    [22] 陈学磊, 张品, 权令伟, 等. 融合深度学习与成像模型的水下图像增强算法[J]. 计算机工程, 2022, 48(2): 243-249.

    CHEN X L, ZHANG P, QUAN L W. Underwater image enhancement algorithm integrating deep learning and imaging models[J]. Computer Engineering, 2022, 48(2): 243-249.
    [23] ZHUANG P X, WU J M, PORIKL F, et al. Underwater image enhancement with Hyper-Laplacian reflectance priors[J]. IEEE Transactions on Image Processing, 2022, 31: 5442-5455. doi: 10.1109/TIP.2022.3196546
    [24] NAIK A, SWARNAKAR A, MITTAL K. Shallow-uwnet: Compressed model for underwater image enhancement (student abstract)[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, USA: 2021, 35(18): 15853-15854.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-25
  • 修回日期:  2025-08-27
  • 录用日期:  2025-09-01
  • 网络出版日期:  2025-11-24

目录

    /

    返回文章
    返回
    服务号
    订阅号