• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下柔性传感器研究进展

王廷宇 石柯涌 吴梦维 唐伟

王廷宇, 石柯涌, 吴梦维, 等. 水下柔性传感器研究进展[J]. 水下无人系统学报, 2025, 33(5): 1-11 doi: 10.11993/j.issn.2096-3920.2025-0093
引用本文: 王廷宇, 石柯涌, 吴梦维, 等. 水下柔性传感器研究进展[J]. 水下无人系统学报, 2025, 33(5): 1-11 doi: 10.11993/j.issn.2096-3920.2025-0093
WANG Tingyu, SHI Keyong, WU Mengwei, TANG Wei. Recent Advances in Underwater Flexible Sensors[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0093
Citation: WANG Tingyu, SHI Keyong, WU Mengwei, TANG Wei. Recent Advances in Underwater Flexible Sensors[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0093

水下柔性传感器研究进展

doi: 10.11993/j.issn.2096-3920.2025-0093
基金项目: 国家万人计划青年拔尖人才(SQ2024QB00757), 国家重点研发计划(2023YFB2604600).
详细信息
    作者简介:

    王廷宇(2000-),男,博士, 主要从事水下触觉智能感知

    通讯作者:

    唐 伟(1986-), 男, 博士, 研究员, 主要从事界面电子转移和可穿戴电子.

Recent Advances in Underwater Flexible Sensors

  • 摘要: 随着海洋开发需求的日益增长, 水下柔性传感器因其优异的柔顺性和环境适应性, 在水下应用领域中展现出巨大的潜力。特别是在高静水压、大应变和耐腐蚀等复杂环境下, 水下柔性传感器的集成应用对于水下软体机器人、潜水装备、海洋探测设备及其他海洋工程系统的感知能力提升具有重要意义。文中综述了电阻式、电容式、压电式、摩擦电式、光纤及电磁传感等机制在水下环境中的最新应用进展。通过对比不同传感机制的优势和挑战, 系统总结了其在水下有人系统与软体机器人中应用的最新进展, 重点讨论了在形变、姿态、触觉及流场感知方面的创新性应用。此外文中还提出, 突破水下柔性传感器在适应性和长期可靠性等方面的瓶颈, 需聚焦多模态融合、智能解耦与仿生集成技术。这些研究成果为水下柔性传感器的未来发展方向提供了新的思路和可能的解决方案。

     

  • 图  1  水下柔性传感测量原理

    Figure  1.  Principle of underwater flexible sensing measurement

    图  2  软体机器人本体感知

    Figure  2.  Intrinsic Perception of Soft Robots

    图  3  水下柔性机械臂环境交互

    Figure  3.  Environmental interaction of an underwater flexible manipulator

  • [1] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475. doi: 10.1038/nature14543
    [2] LASCHI C, MAZZOLAI B, CIANCHETTI M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities[J]. Sci Robot, 2016, 1(1): eaah3690. doi: 10.1126/scirobotics.aah3690
    [3] WANG Q H, KALANTAR-ZADEH K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193
    [4] TRUBY R L, LEWIS J A. Printing soft matter in three dimensions[J]. Nature, 2016, 540(7633): 371-378. doi: 10.1038/nature21003
    [5] 李天勇, 丛宾, 连明华, 等. 一种电阻式水下位移传感器的研制[J]. 兵工自动化, 2001(1): 53-55.

    LI T Y, CONG B, LIAN M H, et al. Development of a resistance sensor for displacement between slabs under water[J]. Ordnance Industry Automation, 2001(1): 53-55.
    [6] QU J, YUAN Q, LI Z, et al. All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping[J]. Nano Energy, 2023, 111: 108387. doi: 10.1016/j.nanoen.2023.108387
    [7] LIANG J, GUO H, SUN L, et al. A nanocrack-based graphene/PDMS-encapsulated medical tape flexible sensor for motion detection of underwater robots[J]. Adv Mater Technol, 2025, e00620.
    [8] WANG Q, WANG Z, LI Z, et al. Multi-hierarchically porous SWNTs-TPU/C-WPU composite film for underwater self-powered multi-modal tactile information sensing[J]. Adv Funct Mater, 2025, e09538.
    [9] 刘旭, 钟敬, 荣灿灿, 等. 考虑水下跨接电容效应的UMCR-WPT系统多参数辨识方法[EB/OL]. (2025-07-17)[2025-09-02]. https://doi.org/10.19595/j.cnki.1000-6753.tces.242393.
    [10] 何常德, 张盛东, 张斌珍, 等. 面向水下应用的电容式微机械超声换能器[J]. 应用声学, 2022, 41(3): 405-411.

    HE C D, ZHANG S D, ZHANG B Z, et al. Capacitive micromachined ultrasonic transducer for underwater applications[J]. Journal of Applied Acoustics, 2022, 41(3): 405-411.
    [11] 朴胜春, 雷亚辉, 张强, 等. 压电微机电系统水下特征信息检测传感微系统[J]. 哈尔滨工程大学学报, 2025, 46(8): 1635-1643, 1684.

    PIAO S C, LEI Y H, ZHANG Q, et al. Piezoelectric micro-electromechanical systems sensing microsystem for underwater feature information detection[J]. Journal of Harbin Engineering University, 2025, 46(8): 1635-1643, 1684.
    [12] 郭成东, 陈宇航, 曹鑫林, 等. PVDF压电纤维仿生柔性传感器水下传感特性研究[J]. 压电与声光, 2022, 44(6): 868-872.

    GUO C D, CHEN Y H, CAO X L, et al. Research on underwater sensing characteristics of pvdf piezoelectric fiber biomimetic flexible sensor[J]. Piezoelectrics & Acoustooptics, 2022, 44(6): 868-872.
    [13] KONG Z, BOAHEN E K, KIM D J, et al. Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains[J]. Nat Commun, 2024, 15(1): 2129. doi: 10.1038/s41467-024-46334-4
    [14] LIN B, YANG P, LIU W, et al. Flexible hydrogel sensors for real-time and synchronized monitoring of underwater multiple parameters based on piezoelectric elastomer/sodium alginate/carbon quantum dots composites[J]. Biomacromolecules, 2025, 26(7): 4230-4237. doi: 10.1021/acs.biomac.5c00241
    [15] QU J, CUI G, LI Z, et al. Advanced flexible sensing technologies for soft robots[J]. Adv Funct Mater, 2024, 34(29): 2401311. doi: 10.1002/adfm.202401311
    [16] YU P, WANG L, JIN J, Et al. A novel piezoelectric actuated underwater robotic finger[J]. Smart Mater Struct, 2019, 28(10): 105047. doi: 10.1088/1361-665X/ab3c3a
    [17] JIN T, SUN Z, LI L, et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun, 2020, 11(1): 5381.
    [18] LI Y, LI Q , MA X, et al. A non-contact triboelectric vibration sensor with a spiral floating electrode structure for low-frequency vibration monitoring[J]. Nano Energy, 2025, 133: 110437.
    [19] XU P, LIU J, LIU B, et al. Deep-learning-assisted triboelectric whisker for near field perception and online state estimation of underwater vehicle[J]. Nano Energy, 2024, 129: 110011. doi: 10.1016/j.nanoen.2024.110011
    [20] 徐鹏, 刘建华, 谢广明, 等. 基于柔性摩擦纳米发电机的水下仿生胡须传感器研究[J]. 兵工自动化, 2022, 41(12): 2-24.

    XU P, LIU J H, XIE G M, et al. Research on underwater bionic whisker sensor based on flexible friction nanogenerator[J]. Ordnance Industry Automation, 2022, 41(12): 2-24.
    [21] WANG T, LI C, GAO Z, et al. Triboelectric encoders for accurate and durable wearable motion sensing[J]. Device, 2024, 2(9): 100525 doi: 10.1016/j.device.2024.100525
    [22] 韩玲娟, 王强, 范昕炜, 等. 分布式光纤传感水下天然气管道泄漏的SPE诊断法[J]. 激光与光电子学进展, 2016, 53(5): 269-274.

    HAN L J, WANG Q, FAN X W, et al. Underwater gas pipeline leakage diagnostic method by distributed optical fiber sensor based on SPE[J]. Laser & Optoelectronics Progress, 2016, 53(5): 269-274.
    [23] 朱海, 李智忠, 孙荣光, 等. 高灵敏度光纤光栅水下压力传感研究[J]. 光电子激光, 2007, 18(5): 536-538.

    ZHU H, LI Z Z, SUN R G, et al. Research on fiber grating underwater pressure sensing with high sensitivity[J]. Journal of Optoelectronics·Laser, 2007, 18(5): 536-538.
    [24] MO L, ZHANG D, FU X, et al. An underwater proprioceptive soft actuator based on the flexible optical waveguide[J]. ROBOT, 2024, 46(2): 129-138.
    [25] ZHENG H, WU H, WANG Y, et al. High-sensitivity distributed optical fiber sensor for simultaneous hydrostatic pressure and temperature measurement based on birefringent frequency-scanning φ-OTDR[J]. Opt Laser Technol, 2024, 175: 110756. doi: 10.1016/j.optlastec.2024.110756
    [26] AZIL K, FERRIA K, BOUZID S. Cladless optical fiber sensor based on evanescent wave absorption for monitoring methylene blue induced water pollution[J]. J Opt Soc Am B, 2020, 37(11): A253-A258. doi: 10.1364/JOSAB.396646
    [27] BAI H, KIM Y S, SHEPHERD R F. Autonomous self-healing optical sensors for damage intelligent soft-bodied systems[J]. Sci Adv, 8(49): eabq2104.
    [28] 孙常存, 袁鹏, 任志良, 等. 水下电磁波频率变化特性实验研究[J]. 水下无人系统学报, 2014, 22(1): 72-77.

    SUN C C, YUAN P, REN Z L, et al. Experimental research for exploring frequency variation characteristics of underwater electromagnetic wave[J]. Journal of Unmanned Undersea Systems, 2014, 22(1): 72-77.
    [29] ZHOU Y, ZHAO X, XU J, et al. A multimodal magnetoelastic artificial skin for underwater haptic sensing[J]. Sci Adv, 2024, 10(1): eadj8567. doi: 10.1126/sciadv.adj8567
    [30] DU T, HUGHES J, WAH S, et al. Underwater soft robot modeling and control with differentiable simulation[J]. IEEE Robot Autom Lett, 2021, 6(3): 4994-5001. doi: 10.1109/LRA.2021.3070305
    [31] HAMAMATSU Y, KUPYN P, GKLIVA R, et al. Underwater soft fin flapping motion with deep neural network based surrogate model[C]//2025 IEEE 8th International Conference on Soft Robotics(RoboSoft). Lausanne, Switzerland: IEEE, 2025: 1-6.
    [32] VICARI A, OBAYASHI N, STELLA F, et al. Proprioceptive sensing of soft tentacles with model based reconstruction for controller optimization[EB/OL]. [2025-08-06]. https://arxiv.org/pdf/2211.13536v1.
    [33] MICKLEM L, DONG H, GIORGIO-SERCHI F, et al. Closed-loop underwater soft robotic foil shape control using flexible e-skin[EB/OL]. [2025-08-06]. https://arxiv.org/pdf/2408.01130.
    [34] SANG G, YAN R, YIN B, et al. A compact multifunctional fiber sensor for simultaneous underwater measurement of salinity, temperature and strain[J]. Measurement, 2022, 194: 111039. doi: 10.1016/j.measurement.2022.111039
    [35] WANG H, TOTARO M, BECCAI L. Toward perceptive soft robots: progress and challenges[J]. Adv Sci, 2018, 5(9): 1800541. doi: 10.1002/advs.201800541
    [36] CHRISTOPHER W, MARKUS H, DEREK O, et al. Polymer sensors for underwater robot proprioception[J]. Sens Actuators Phys, 2023, 351: 114179. doi: 10.1016/j.sna.2023.114179
    [37] WANG S, SUN Z, DUAN S, et al. A Hydrogel-based self-sensing underwater actuator[J]. Micromachines, 2022, 13(10): 1779. doi: 10.3390/mi13101779
    [38] MURALI B S P, VISENTIN F, SADEGHI A, et al. Sensorized foam actuator with intrinsic proprioception and tunable stiffness behavior for soft robots[J]. Adv Intell Syst, 2 021, 3(6): 2100022.
    [39] SHEN Z, ZHAO Y, ZHONG H, et al. Soft origami optical-sensing actuator for underwater manipulation[J]. Frontiers in Robotics and AI, 2021, 7(2): 616128.
    [40] GUO N, HAN X, ZHONG S, et al. Proprioceptive state estimation for amphibious tactile sensing[J]. IEEE Trans Robot, 2024, 40: 4662-4676. doi: 10.1109/TRO.2024.3463509
    [41] JING R, ANDERSON M L, GARCIA J C P, et al. Self-sensing for proprioception and contact detection in soft robots using shape memory alloy artificial muscles[EB/OL]. [2025-06-07]. https://arxiv.org/pdf/2409.17111.
    [42] THURUTHEL T G, SHIH B, LASCHI C, et al. Soft robot perception using embedded soft sensors and recurrent neural networks[J]. Sci Robot, 2019, 4(26): eaav1488. doi: 10.1126/scirobotics.aav1488
    [43] VAN MEERBEEK I M, DE SA C M, SHEPHERD R F. Soft optoelectronic sensory foams with proprioception[J]. Sci Robot, 2018, 3(24): eaau2489. doi: 10.1126/scirobotics.aau2489
    [44] ZHANG Y, KONG D, SHI Y, et al. Recent progress on underwater soft robots: adhesion, grabbing, actuating, and sensing[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1196922. doi: 10.3389/fbioe.2023.1196922
    [45] YOUSSEF S M, SOLIMAN M, SALEH M A, et al. Underwater soft robotics: A review of bioinspiration in design, actuation, modeling, and control[J]. Micromachines, 2022, 13(1): 110. doi: 10.3390/mi13010110
    [46] LIU S, ZHANG D, FU X, et al. Tactile sensing for soft robotic manipulators in 50 MPa hydrostatic pressure environments[J]. Adv Intell Syst, 2023, 5(12): 2300296. doi: 10.1002/aisy.202300296
    [47] SUBAD R A, SAIKOT M M, PARK K. Soft multi-directional force sensor for underwater robotic application[J]. Sensors, 2022, 22(10): 3850 doi: 10.3390/s22103850
    [48] WANG T, GAO Z, LI C, et al. Bioinspired textured sensor arrays with early temporal processing for ultrafast robotic tactile recognition[J]. Mater Sci Eng R Rep, 2026, 167: 101113. doi: 10.1016/j.mser.2025.101113
    [49] ZHANG T, WANG R, CAO Q, et al. FlowSight: Vision-based artificial lateral line sensor for water flow perception[J]. IEEE Trans Robot, 2025, 41: 3260-3277. doi: 10.1109/TRO.2025.3567551
    [50] 李原正, 王天润, 关堂镇, 等. 基于液态金属型摩擦纳米发电的水下仿生触须传感器[J]. 水下无人系统学报, 2024, 32(5): 794-800.

    LI Y Z, WANG T R, GUAN T Z, et al. Underwater biomimetic whisker sensor based on liquid metal and triboelectric nanogenerator[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 794-800.
    [51] MO L, ZHANG D, FU X, et al. A multidirectional external perception soft actuator based on flexible optical waveguide for underwater teleoperation[J]. Adv Intell Syst, 2023, 5(10): 2300029. doi: 10.1002/aisy.202300029
    [52] XIE Z, YUAN F, LIU J, et al. Octopus-inspired sensorized soft arm for environmental interaction[J]. Sci Robot, 8(84): eadh7852.
  • 加载中
图(3)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-23
  • 修回日期:  2025-09-06
  • 录用日期:  2025-09-11
  • 网络出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    服务号
    订阅号