• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VMD-FastICA的单通道舰船辐射噪声盲源分离

李玉伟 王慧源

李玉伟, 王慧源. 基于VMD-FastICA的单通道舰船辐射噪声盲源分离[J]. 水下无人系统学报, 2025, 33(6): 995-1005 doi: 10.11993/j.issn.2096-3920.2025-0089
引用本文: 李玉伟, 王慧源. 基于VMD-FastICA的单通道舰船辐射噪声盲源分离[J]. 水下无人系统学报, 2025, 33(6): 995-1005 doi: 10.11993/j.issn.2096-3920.2025-0089
LI Yuwei, WANG Huiyuan. Blind Source Separation of Single-Channel Ship Radiated Noise Based on VMD-FastICA[J]. Journal of Unmanned Undersea Systems, 2025, 33(6): 995-1005. doi: 10.11993/j.issn.2096-3920.2025-0089
Citation: LI Yuwei, WANG Huiyuan. Blind Source Separation of Single-Channel Ship Radiated Noise Based on VMD-FastICA[J]. Journal of Unmanned Undersea Systems, 2025, 33(6): 995-1005. doi: 10.11993/j.issn.2096-3920.2025-0089

基于VMD-FastICA的单通道舰船辐射噪声盲源分离

doi: 10.11993/j.issn.2096-3920.2025-0089
详细信息
    作者简介:

    李玉伟(1988-), 男, 硕士, 工程师, 主要研究方向为水声信号处理

  • 中图分类号: TJ630; U663

Blind Source Separation of Single-Channel Ship Radiated Noise Based on VMD-FastICA

  • 摘要: 针对在仅有单通道信号可用的极端条件下, 难以从混合信号中分离出不同目标舰船辐射噪声信号的问题, 开展单通道盲源分离算法研究。提出一种基于变分模态分解(VMD)-改进快速独立成分分析(FastICA)的舰船辐射噪声盲源分离算法。在单通道条件下, 首先通过VMD将单通道信号分解为频率成分相对独立的多阶模态, 初步实现独立频率成分的分离; 而后将各阶模态组合为虚拟多通道信号, 解决FastICA无法处理单通道信号的问题; 最后通过FastICA对虚拟多通道信号进行处理, 进一步分离独立信号成分, 从而实现单通道舰船辐射噪声盲源分离。仿真与试验数据分析结果显示, VMD-FastICA算法分离的目标信号与原目标信号的相似度, 较奇异谱分析-独立成分分析(SSA-ICA)算法均有提升, 表明其在单通道舰船辐射噪声信号盲源分离中效果良好, 能够实现单通道条件下不同目标舰船辐射噪声信号的有效分离。

     

  • 图  1  VMD-FastICA算法流程图

    Figure  1.  Flow chart of VMD-FastICA algorithm

    图  2  仿真信号时域波形

    Figure  2.  Time domain waveforms of simulation signals

    图  3  SSA-ICA分离仿真信号时域波形

    Figure  3.  Time domain waveforms of simulation signals separated by SSA-ICA

    图  4  VMD-FastICA分离仿真信号时域波形

    Figure  4.  Time domain waveforms of simulation signal separated by VMD-FastICA

    图  5  仿真信号频谱

    Figure  5.  Spectra of simulation signals

    图  6  SSA-ICA分离仿真信号频谱

    Figure  6.  Spectra of simulation signals separated by SSA-ICA

    图  7  VMD-FastICA分离仿真信号频谱

    Figure  7.  Spectra of simulation signals separated by VMD-FastICA

    图  8  试验1设备布放图

    Figure  8.  Layout of equipment in experiment 1

    图  9  试验2设备布放图

    Figure  9.  Layout of equipment in experiment 2

    图  10  试验1信号时域波形

    Figure  10.  Time domain waveforms of signals in experiment 1

    图  11  SSA-ICA分离试验1信号时域波形

    Figure  11.  Time domain waveforms of signals in experiment 1 separated by SSA-ICA

    图  12  VMD-FastICA分离试验1信号时域波形

    Figure  12.  Time domain waveforms of signals in experiment 1 separated by VMD-FastICA

    图  13  试验1信号频谱

    Figure  13.  Spectra of signals in experiment 1

    图  14  SSA-ICA分离试验1信号频谱

    Figure  14.  Spectra of signals in experiment 1 separated by SSA-ICA

    图  15  VMD-FastICA分离试验1信号频谱

    Figure  15.  Spectra of signals in experiment 1 separated by VMD-FastICA

    图  16  试验2信号时域波形

    Figure  16.  Time domain waveforms of signals in experiment 2

    图  17  SSA-ICA分离试验2信号时域波形

    Figure  17.  Time domain waveforms of signals in experiment 2 separated by SSA-ICA

    图  18  VMD-FastICA分离试验2信号时域波形

    Figure  18.  Time domain waveforms of signals in experiment 2 separated by VMD-FastICA

    图  19  试验2信号频谱

    Figure  19.  Spectra of signals in experiment 2

    图  20  SSA-ICA分离试验2信号频谱

    Figure  20.  Spectra of signals in experiment 2 separated by SSA-ICA

    图  21  VMD-FastICA分离试验2信号频谱

    Figure  21.  Spectra of signals in experiment 2 separated by VMD-FastICA

    表  1  仿真信号相关系数绝对值

    Table  1.   Absolute values of correlation coefficients for simulation signals

    处理方法目标1信号目标2信号
    混合信号0.78520.7263
    SSA-ICA0.84160.3881
    VMD-FastICA0.96070.9488
    下载: 导出CSV

    表  2  试验1信号相关系数绝对值

    Table  2.   Absolute values of correlation coefficients for signals in experiment 1

    处理方法目标1信号目标2信号
    混合信号0.71100.7110
    SSA-ICA0.78060.5706
    VMD-FastICA0.88600.8863
    下载: 导出CSV

    表  3  混合信号、分离后信号与原信号相关系数绝对值

    Table  3.   Absolute correlation coefficients among mixed signal, separated signal and original signal

    处理方法目标1信号目标2信号
    混合信号0.71600.7160
    SSA-ICA0.75330.4590
    VMD-FastICA0.75930.7538
    下载: 导出CSV

    表  4  加入环境噪声后试验信号相关系数绝对值

    Table  4.   Absolute values of correlation coefficients for experiment signals with environmental noise

    试验类别 处理方法 目标1信号 目标2信号
    试验1混合信号0.58710.5776
    SSA-ICA0.63850.5362
    VMD-FastICA0.79060.6760
    试验2混合信号0.60470.5488
    SSA-ICA0.42380.5892
    VMD-FastICA0.66540.6249
    下载: 导出CSV

    表  5  VMD-FastICA分离试验信号与原信号相关系数绝对值

    Table  5.   Absolute values of correlation coefficients between VMD-FastICA separated experiment signals and original signals

    试验
    类别
    α 信号
    类别
    K=5 K=6 K=7 K=8 K=9
    试验1 1450 目标1 0.880 5 0.889 6 0.889 8 0.885 8 0.865 9
    目标2 0.885 4 0.885 0 0.886 3 0.886 7 0.798 2
    1500 目标1 0.880 0 0.889 6 0.890 0 0.886 0 0.865 8
    目标2 0.884 9 0.884 6 0.885 9 0.886 3 0.797 8
    1550 目标1 0.880 5 0.889 6 0.889 8 0.885 8 0.865 9
    目标2 0.885 4 0.885 0 0.886 3 0.886 7 0.798 2
    试验2 1450 目标1 0.651 9 0.751 6 0.759 9 0.759 9 0.745 1
    目标2 0.767 9 0.754 0 0.753 3 0.754 0 0.726 9
    1500 目标1 0.651 0 0.750 8 0.759 2 0.759 3 0.744 2
    目标2 0.767 1 0.753 7 0.753 0 0.753 8 0.726 6
    1550 目标1 0.650 3 0.749 9 0.758 6 0.758 8 0.743 2
    目标2 0.766 3 0.753 4 0.752 8 0.753 6 0.726 4
    下载: 导出CSV

    表  6  VMD-FastICA分离试验信号与原信号相关系数绝对值(含环境噪声)

    Table  6.   Absolute values of correlation coefficients between VMD-FastICA separated experiment signals and original signals with environmental noise

    试验
    类别
    α 信号
    类别
    K=5 K=6 K=7 K=8 K=9
    试验1 1450 目标1 0.776 0 0.775 6 0.799 4 0.790 3 0.790 0
    目标2 0.672 2 0.675 1 0.676 3 0.675 4 0.655 3
    1500 目标1 0.775 3 0.775 1 0.790 4 0.790 6 0.790 4
    目标2 0.672 1 0.675 0 0.655 7 0.676 0 0.655 7
    1550 目标1 0.774 7 0.774 5 0.800 2 0.790 9 0.790 8
    目标2 0.672 0 0.674 9 0.677 3 0.676 5 0.656 1
    试验2 1450 目标1 0.607 8 0.595 6 0.623 4 0.665 6 0.628 9
    目标2 0.523 8 0.477 3 0.665 7 0.625 2 0.644 4
    1500 目标1 0.606 9 0.592 0 0.623 0 0.665 4 0.628 8
    目标2 0.523 4 0.470 1 0.665 5 0.624 9 0.644 1
    1550 目标1 0.606 0 0.588 1 0.622 8 0.665 2 0.628 6
    目标2 0.523 0 0.462 6 0.665 3 0.624 6 0.643 8
    下载: 导出CSV
  • [1] 倪晋平, 马远良, 孙超, 等. 用独立成份分析算法实现水声信号盲分离[J]. 声学学报, 2002, 27(4): 321-326.

    NI J P, MA Y L, SUN C, et al. Blind separation of underwater acoustic signals via independent component analysis algorithms[J]. Acta Acustica, 2002, 27(4): 321-326.
    [2] 张安清, 章新华. 基于信息理论的舰船噪声盲分离算法[J]. 系统工程与电子技术, 2002(1): 38-40, 51.

    ZHANG A Q, ZHANG X H. Blind separation algorithm for ship noise based on information theory[J]. Systems Engineering and Electronics, 2002(1): 38-40, 51.
    [3] 姜卫东, 高明生, 陆佶人. 基于两个频点的水声信号盲源分离[J]. 声学技术, 2004(4): 197-200.

    JIANG W D, GAO M S, LU J R. Blind source separation for underwater signals using only two frequency bins[J]. Technical Acoustics, 2004(4): 197-200.
    [4] 单志超, 林春生, 向前. 基于二阶非平稳统计量的船舶噪声信号的盲分离[J]. 信号处理, 2009, 25(6): 973-976.

    SHAN Z C, LIN C S, XIANG Q. The separation of ship noise signal based on second order nonstationary statistic[J]. Journal of Signal Processing, 2009, 25(6): 973-976.
    [5] 刘佳, 杨士莪, 朴胜春, 等. 单观测通道船舶辐射噪声盲源分离[J]. 声学学报, 2011, 36(3): 265-270.

    LIU J, YANG S E, PIAO S C, et al. Blind source separation of ship-radiated noise using single observing channel[J]. Acta Acustica, 2011, 36(3): 265-270.
    [6] 何会会, 李钢虎, 要庆生, 等. 用慢特征分析算法实现水声信号盲分离[J]. 声学技术, 2014, 33(3): 270-274.

    HE H H, LI G H, YAO Q S, et al. Blind source separation of underwater acoustic signals by using slowness feature analysis[J]. Technical Acoustics, 2014, 33(3): 270-274.
    [7] 康春玉, 李文哲, 夏志军, 等. 盲重构频域阵列信号的压缩感知水声目标方位估计[J]. 声学学报, 2019, 44(6): 951-960.

    KANG C Y, LI W Z, XIA Z J, et al. Direction of arrival estimation for underwater acoustic target based on compressed sensing after blind reconstruction of array signal in frequency domain[J]. Acta Acustica, 2019, 44(6): 951-960.
    [8] 郑艳艳, 朱永利, 高佳程. 基于SSA与ICA的变压器局部放电混合信号分离[J]. 电测与仪表, 2020, 57(22): 84-90.

    ZHENG Y Y, ZHU Y L, GAO J C. Hybrid signal separation of transformer partial discharge based on SSA and ICA[J]. Electrical Measurement and Instrumentation, 2020, 57(22): 84-90.
    [9] MOHEBBIAN R M, ALAM W M, WAHID A K, et al. Single channel high noise level ECG deconvolution using optimized blind adaptive filtering and fixed-point convolution kernel compensation[J]. Biomedical Signal Processing and Control, 2020, 57: 101673. doi: 10.1016/j.bspc.2019.101673
    [10] 付卫红, 周雨菲, 张鑫钰, 等. 基于参数估计和Kalman滤波的单通道盲源分离算法[J]. 系统工程与电子技术, 2024, 46(8): 2850-2856.

    FU W H, ZHOU Y F, ZHANG X Y, et al. Single-channel blind source separation algorithm based on parameter estimation and Kalman filter[J]. Systems Engineering and Electronics, 2024, 46(8): 2850-2856.
    [11] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [12] HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634. doi: 10.1109/72.761722
    [13] 姚小俊, 孙守鹏, 王强, 等. 变分模态分解与时间序列模型相结合的结构损伤识别方法研究[J]. 振动与冲击, 2025, 44(5): 131-139, 217.

    YAO X J, SUN S P, WANG Q, et al. Structural damage identification method combining VMD and ARIMA model[J]. Journal of Vibration and Shock, 2025, 44(5): 131-139, 217.
    [14] SARMADI H, ENTEZAMI A, KHORRAM D M. Energy-based damage localization under ambient vibration and non-stationary signals by ensemble empirical mode decomposition and Mahalanobis-squared distance[J]. Journal of Vibration and Control, 2019, 26(11-12): 1012-1027.
    [15] 李威霖, 蒋扬名, 张众杰, 等. 基于VMD与FastICA的电动汽车减速器噪声测试分离技术研究[J]. 机械传动, 2024, 48(11): 162-168.

    LI W L, JIANG Y M, ZHANG Z J, et al. Research on background noise separation of reducers based on VMD and FastICA[J]. Journal of Mechanical Transmission, 2024, 48(11): 162-168.
    [16] 刘佳, 杨士莪, 朴胜春. 多途环境下的单通道水声信号盲源分离[J]. 振动与冲击, 2012, 31(6): 15-18.

    LIU J, YANG S E, PIAO S C. Single channel blind source separation for underwater acoustic signal under multipath condition[J]. Journal of Vibration and Shock, 2012, 31(6): 15-18.
  • 加载中
计量
  • 文章访问数:  80
  • HTML全文浏览量:  35
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-18
  • 修回日期:  2025-08-27
  • 录用日期:  2025-09-08
  • 网络出版日期:  2025-11-25
图(21) / 表(6)

目录

    /

    返回文章
    返回
    服务号
    订阅号