• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VMD-FastICA的单通道舰船辐射噪声盲源分离

李玉伟 王慧源

李玉伟, 王慧源. 基于VMD-FastICA的单通道舰船辐射噪声盲源分离[J]. 水下无人系统学报, 2025, 33(6): 1-13 doi: 10.11993/j.issn.2096-3920.2025-0089
引用本文: 李玉伟, 王慧源. 基于VMD-FastICA的单通道舰船辐射噪声盲源分离[J]. 水下无人系统学报, 2025, 33(6): 1-13 doi: 10.11993/j.issn.2096-3920.2025-0089
LI Yuwei, WANG Huiyuan. Blind Source Separation of Single Channel Ship Radiated Noise Based on VMD-FastICA[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0089
Citation: LI Yuwei, WANG Huiyuan. Blind Source Separation of Single Channel Ship Radiated Noise Based on VMD-FastICA[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0089

基于VMD-FastICA的单通道舰船辐射噪声盲源分离

doi: 10.11993/j.issn.2096-3920.2025-0089
详细信息
    作者简介:

    李玉伟(1988年-), 男, 硕士, 工程师, 主要研究方向为水声信号处理

  • 中图分类号: TJ630; U663

Blind Source Separation of Single Channel Ship Radiated Noise Based on VMD-FastICA

  • 摘要: 针对在仅有单通道信号可用的极端条件下, 难以从混合信号中分离出不同目标舰船辐射噪声信号问题, 开展单通道盲源分离算法研究。提出一种基于变分模态分解(VMD)改进快速独立成分分析(FastICA)的舰船辐射噪声盲源分离算法。在单通道条件下, 首先通过VMD将单通道信号分解为频率成分相对独立的多阶模态, 初步实现独立频率成分的分离; 而后将各阶模态组合为虚拟多通道信号, 解决FastICA无法处理单通道信号的问题; 最后通过FastICA对虚拟多通道信号进行处理, 进一步分离独立信号成分, 从而实现单通道舰船辐射噪声盲源分离。仿真与试验数据分析结果显示, VMD-FastICA算法分离的目标信号与原目标信号的相似度, 较奇异谱分析-独立成分分析(SSA-ICA)算法均有提升, 表明其在单通道舰船辐射噪声信号盲源分离中效果良好, 可能够实现单通道条件下不同目标舰船辐射噪声信号的有效分离。

     

  • 图  1  VMD-FastICA算法流程图

    Figure  1.  VMD-FastICA algorithm flowchart

    图  2  混合信号及目标一、二信号时域波形

    Figure  2.  Time domain waveform of mixed signal, target 1 signal and target 2 signal

    图  3  SSA-ICA分离后目标一、二信号时域波形

    Figure  3.  Time domain waveform of target 1 signal and target 2 signal after SSA-ICA

    图  4  VMD-FastICA分离后目标一、二信号时域波形

    Figure  4.  Time domain waveform of target 1 signal and target 2 signal after VMD-FastICA

    图  5  混合信号及目标一、二信号频谱

    Figure  5.  Mixed signal, target 1 signal, and target 2 signal spectrum

    图  6  SSA-ICA分离后目标一、目标二信号频谱

    Figure  6.  Target 1 signal and target 2 signal spectrum after SSA-ICA

    图  7  VMD-FastICA分离后目标一、二信号频谱

    Figure  7.  Target 1 signal and target 2 signal spectrum after VMD-FastICA

    图  8  试验一设备布放图

    Figure  8.  Layout of experiment 1’s equipment

    图  9  试验二设备布放图

    Figure  9.  Layout of experiment 2’s equipment

    图  10  混合信号及目标一、二信号时域波形

    Figure  10.  Time domain waveform of mixed signal, target 1 signal, and target 2 signal

    图  11  SSA-ICA分离后目标一、二信号时域波形

    Figure  11.  Time domain waveform of target 1 signal and target 2 signal after SSA-ICA

    图  12  VMD-FastICA分离后目标一、二信号时域波形

    Figure  12.  Time domain waveform of target 1 signal and target 2 signal after VMD-FastICA

    图  13  混合信号及目标一、二信号频谱

    Figure  13.  Mixed signal, target 1 signal, and target 2 signal spectrum

    图  14  SSA-ICA分离后目标一、二信号频谱

    Figure  14.  Target 1 signal and target 2 signal spectrum after SSA-ICA

    图  15  VMD-FastICA分离后目标一、二信号频谱

    Figure  15.  Target 1 signal and target 2 signal spectrum after VMD-FastICA

    图  16  混合信号及目标一、二信号时域波形

    Figure  16.  Time domain waveform of mixed signal, target 1 signal, and target 2 signal

    图  17  SSA-ICA分离后目标一、二信号时域波形

    Figure  17.  Time domain waveform of target 1 signal and target 2 signal after SSA-ICA

    图  18  VMD-FastICA分离后目标一、二信号时域波形

    Figure  18.  Time domain waveform of target 1 signal and target 2 signal after VMD-FastICA

    图  19  混合信号及目标一、二信号频谱

    Figure  19.  Mixed signal, target 1 signal, and target 2 signal spectrum

    图  20  SSA-ICA分离后目标一、二信号频谱

    Figure  20.  Target 1 signal and target 2 signal spectrum after SSA-ICA

    图  21  VMD-FastICA分离后目标一、二信号频谱

    Figure  21.  Target 1 signal and target 2 signal spectrum after VMD-FastICA

    表  1  混合信号、分离后目标信号与原目标信号相关系数绝对值

    Table  1.   Absolute correlation coefficients between mixed signal, separated target signal and original target signal

    处理方法目标一信号目标二信号
    混合信号0.78520.7263
    SSA-ICA0.84160.3881
    VMD-FastICA0.96070.9488
    下载: 导出CSV

    表  2  混合信号、分离后目标信号与原目标信号相关系数绝对值

    Table  2.   Absolute correlation coefficients between mixed signal, separated target signal and original target signal

    处理方法目标一信号目标二信号
    混合信号0.71100.7110
    SSA-ICA0.78060.5706
    VMD-FastICA0.88600.8863
    下载: 导出CSV

    表  3  混合信号、分离后信号与原信号相关系数绝对值

    Table  3.   Absolute correlation coefficients between mixed signal, separated signal and original signal

    处理方法目标一信号目标二信号
    混合信号0.71600.7160
    SSA-ICA0.75330.4590
    VMD-FastICA0.75930.7538
    下载: 导出CSV

    表  4  加入噪声后混合信号及SSA-ICA/VMD-FastICA分离信号与原目标的相关系数绝对值

    Table  4.   Absolute correlation coefficients of original target signals with noise-added mixed signals and SSA-ICA/VMD-FastICA separated signals

    处理方法目标一信号目标二信号
    混合信号0.58710.5776
    SSA-ICA0.63850.5362
    VMD-FastICA0.79060.6760
    下载: 导出CSV

    表  5  加入噪声后混合信号、分离后信号与原信号相关系数绝对值

    Table  5.   Absolute correlation coefficients of original signals with noise-added mixed signals and separated signals

    处理方法 目标一信号 目标二信号
    混合信号 0.6047 0.5488
    SSA-ICA 0.4238 0.5892
    VMD-FastICA 0.6654 0.6249
    下载: 导出CSV

    表  6  VMD-FastICA分离后信号与原信号相关系数绝对值(试验一)

    Table  6.   Absolute correlation coefficients between VMD-FastICA separated signal and original signal (Experiment 1)

    (a)α=1450
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.8805 0.8896 0.8898 0.8858 0.8659
    目标二 0.8854 0.8850 0.8863 0.8867 0.7982
    (b)α=1500
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.8800 0.8896 0.8900 0.8860 0.8658
    目标二 0.8849 0.8846 0.8859 0.8863 0.7978
    (c)α=1550
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.8805 0.8896 0.8898 0.8858 0.8659
    目标二 0.8854 0.8850 0.8863 0.8867 0.7982
    下载: 导出CSV

    表  7  VMD-FastICA分离后信号与原信号相关系数绝对值(试验二)

    Table  7.   Absolute correlation coefficients between VMD-FastICA separated signal and original signal (Experiment 2)

    (a)α=1450
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.6519 0.7516 0.7599 0.7599 0.7451
    目标二 0.7679 0.7540 0.7533 0.7540 0.7269
    (b)α=1500
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.6510 0.7508 0.7592 0.7593 0.7442
    目标二 0.7671 0.7537 0.7530 0.7538 0.7266
    (c)α=1550
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.6503 0.7499 0.7586 0.7588 0.7432
    目标二 0.7663 0.7534 0.7528 0.7536 0.7264
    下载: 导出CSV

    表  8  加入环境噪声, VMD-FastICA分离后信号与原信号相关系数绝对值(试验一)

    Table  8.   Added environmental noise, absolute correlation coefficients between VMD-FastICA separated signal and original signal (Experiment 1)

    (a)α=1450
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.7760 0.7756 0.7994 0.7903 0.7900
    目标二 0.6722 0.6751 0.6763 0.6754 0.6553
    (b)α=1500
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.7753 0.7751 0.7904 0.7906 0.7904
    目标二 0.6721 0.6750 0.6557 0.6760 0.6557
    (c)α=1550
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.7747 0.7745 0.8002 0.7909 0.7908
    目标二 0.6720 0.6749 0.6773 0.6765 0.6561
    下载: 导出CSV

    表  9  加入环境噪声, VMD-FastICA分离后信号与原信号相关系数绝对值(试验二)

    Table  9.   Added environmental noise, absolute correlation coefficients between VMD-FastICA separated signal and original signal (Experiment 2)

    (a)α=1450
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.6078 0.5956 0.6234 0.6656 0.6289
    目标二 0.5238 0.4773 0.6657 0.6252 0.6444
    (b)α=1500
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.6069 0.5920 0.6230 0.6654 0.6288
    目标二 0.5234 0.4701 0.6655 0.6249 0.6441
    (c)α=1550
    信号类别 K=5 K=6 K=7 K=8 K=9
    目标一 0.6060 0.5881 0.6228 0.6652 0.6286
    目标二 0.5230 0.4626 0.6653 0.6246 0.6438
    下载: 导出CSV
  • [1] 倪晋平, 马远良, 孙超, 等. 用独立成份分析算法实现水声信号盲分离[J]. 声学学报, 2002, 27(4): 321-326.

    NI J P, MA Y L, SUN C, et al. Blind separation of underwater acoustic signals via independent component analysis algorithms[J]. Acta Acustica, 2002, 27(4): 321-326.
    [2] 张安清, 章新华. 基于信息理论的舰船噪声盲分离算法[J]. 系统工程与电子技术, 2002(01): 38-40+51.

    ZHANG A Q, ZHANG X H. Blind separation algorithm for ship noise based on information theory[J]. Systems Engineering and Electronics, 2002(01): 38-40+51.
    [3] 姜卫东, 高明生, 陆佶人. 基于两个频点的水声信号盲源分离[J]. 声学技术, 2004(4): 197-200.

    JIANG W D, GAO M S, LU J R. Blind source separation for underwater signals using only two frequency bins[J]. Technical Acoustics, 2004(4): 197-200.
    [4] 单志超, 林春生, 向前. 基于二阶非平稳统计量的船舶噪声信号的盲分离[J]. 信号处理, 2009, 25(6): 973-976.

    SHAN Z C, LIN C S, XIANG Q. The separation of ship noise signal based on second order nonstationary statistic[J]. Journal of Signal Processing, 2009, 25(6): 973-976.
    [5] 刘佳, 杨士莪, 朴胜春, 等. 单观测通道船舶辐射噪声盲源分离[J]. 声学学报, 2011, 36(3): 265-270.

    LIU J, YANG S E, PIAO S C, et al. Blind source separation of ship-radiated noise using single observing channel[J]. Acta Acustica, 2011, 36(3): 265-270.
    [6] 何会会, 李钢虎, 要庆生, 等. 用慢特征分析算法实现水声信号盲分离[J]. 声学技术, 2014, 33(3): 270-274.

    HE H H, LI G H, YAO Q S, et al. Blind source separation of underwater acoustic signals by using slowness feature analysis[J]. Technical Acoustics, 2014, 33(3): 270-274.
    [7] 康春玉, 李文哲, 夏志军, 等. 盲重构频域阵列信号的压缩感知水声目标方位估计[J]. 声学学报, 2019, 44(6): 951-960.

    KANG C Y, LI W Z, XIA Z J, et al. Direction of arrival estimation for underwater acoustic target based on compressed sensing after blind reconstruction of array signal in frequency domain[J]. Acta Acustica, 2019, 44(6): 951-960.
    [8] 郑艳艳, 朱永利, 高佳程. 基于SSA与ICA的变压器局部放电混合信号分离[J]. 电测与仪表, 2020, 57(22): 84-90.

    ZHENG Y Y, ZHU Y L, GAO J C. Hybrid signal separation of transformer partial discharge based on SSA and ICA[J]. Electrical Measurement and Instrumentation, 2020, 57(22): 84-90.
    [9] MOHEBBIAN R M, ALAM W M, WAHID A K, et al. Single channel high noise level ECG deconvolution using optimized blind adaptive filtering and fixed-point convolution kernel compensation[J]. Biomedical Signal Processing and Control, 2020, 57: 101673. doi: 10.1016/j.bspc.2019.101673
    [10] 付卫红, 周雨菲, 张鑫钰, 等. 基于参数估计和Kalman滤波的单通道盲源分离算法[J]. 系统工程与电子技术, 2024, 46(08): 2850-2856.

    FU W H, ZHOU Y F, ZHANG X Y, et al. Single-channel blind source separation algorithm based on parameter estimation and Kalman filter[J]. Systems Engineering and Electronics, 2024, 46(08): 2850-2856.
    [11] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [12] HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634. doi: 10.1109/72.761722
    [13] 姚小俊, 孙守鹏, 王强, 等. 变分模态分解与时间序列模型相结合的结构损伤识别方法研究[J]. 振动与冲击, 2025, 44(05): 131-139,217.

    YAO X J, SUN S P, WANG Q, et al. Structural damage identification method combining VMD and ARIMA model[J]. Journal of Vibration and Shock, 2025, 44(05): 131-139,217.
    [14] SARMADI H, ENTEZAMI A, KHORRAM D M. Energy-based damage localization under ambient vibration and non-stationary signals by ensemble empirical mode decomposition and Mahalanobis-squared distance[J]. Journal of Vibration and Control, 2019, 26(11-12): 1012-1027.
    [15] 李威霖, 蒋扬名, 张众杰, 等. 基于VMD与FastICA的电动汽车减速器噪声测试分离技术研究[J]. 机械传动, 2024, 48(11): 162-168.

    LI W L, JIANG Y M, ZHANG Z J, et al. Research on background noise separation of reducers based on VMD and FastICA[J]. Journal of Mechanical Transmission, 2024, 48(11): 162-168.
    [16] 刘佳, 杨士莪, 朴胜春. 多途环境下的单通道水声信号盲源分离[J]. 振动与冲击, 2012, 31(06): 15-18.

    LIU J, YANG S E, PIAO S C. Single channel blind source separation for underwater acoustic signal under multipath condition[J]. Journal of Vibration and Shock, 2012, 31(06): 15-18.
  • 加载中
图(21) / 表(9)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-18
  • 修回日期:  2025-08-27
  • 录用日期:  2025-09-08
  • 网络出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    服务号
    订阅号