• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下冰层孔洞限制下航行体入水过程研究

胡新宇 王聪 魏英杰

胡新宇, 王聪, 魏英杰. 水下冰层孔洞限制下航行体入水过程研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0077
引用本文: 胡新宇, 王聪, 魏英杰. 水下冰层孔洞限制下航行体入水过程研究[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0077
HU Xinyu, WANG Cong, WEI Yingjie. Study on the water entry process of the vehicle under the restriction of the underwater ice hole[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0077
Citation: HU Xinyu, WANG Cong, WEI Yingjie. Study on the water entry process of the vehicle under the restriction of the underwater ice hole[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0077

水下冰层孔洞限制下航行体入水过程研究

doi: 10.11993/j.issn.2096-3920.2025-0077
基金项目: 国家自然科学基金项目(11972138).
详细信息
    作者简介:

    胡新宇(1995-), 男, 博士后副研究员, 主要研究方向为跨介质航行器数值仿真研究

    通讯作者:

    魏英杰(1975-), 男, 教授, 主要研究方向为高速水动力学、跨介质飞行器流固耦合动力学等.

  • 中图分类号: TJ631;U674

Study on the water entry process of the vehicle under the restriction of the underwater ice hole

  • 摘要: 航行体经水下冰层孔洞的入水过程, 在极地海洋探测器的投放以及极地区域相关装备的部署策略中, 具有重要工程意义。然而, 当前对冰层孔洞结构下航行体入水行为的研究仍较为有限, 尤其缺乏对孔洞约束下空泡演化机制与航行体动力响应之间耦合关系的系统认识。为此, 文中采用基于CFD的数值仿真方法, 针对航行体穿过水下冰层孔洞的入水过程开展深入研究, 重点揭示孔洞几何约束条件下流场结构、空泡演化与航行体运动状态之间的耦合特征。研究结果表明, 航行体穿越冰层孔洞的过程中, 入水空泡先收缩后膨胀, 流体阻力同步呈现先增后减的趋势; 随着航行体逐步穿过孔洞, 其壁面周围流速显著提升, 尾部流场的不对称性进一步加剧; 此外, 航行体穿越孔洞期间速度明显下降, 这一变化的转折点与空泡溃灭时间基本吻合; 当航行体完全穿过孔洞后, 运动轨迹发生偏转。上述发现不仅丰富了孔洞结构约束条件下入水动力学的理解, 也为极地探测器投放路径设计及结构优化提供了理论依据。

     

  • 图  1  航行体穿过水下冰层孔洞的流域模型

    Figure  1.  Flow domain model of vehicle passing through underwater ice hole

    图  2  流域网格划分

    Figure  2.  Grid division

    图  3  入水速度对比图

    Figure  3.  Comparison diagram of entry velocity

    图  4  不同网格数量下航行体入水的速度变化

    Figure  4.  Velocity variation of vehicle entry into water under different grid numbers

    图  5  冰层孔洞限制下入水过程的对比图

    Figure  5.  Comparison diagram of entry process under the restriction of ice hole

    图  6  冰层孔洞限制下入水速度对比图

    Figure  6.  Comparison diagram of water entry velocity under the restriction of ice hole

    图  7  航行体穿过冰层孔洞的空泡演化过程

    Figure  7.  Cavitation evolution process of vehicle passing through ice hole

    图  8  空泡初期演化过程

    Figure  8.  Initial evolution process of cavitation

    图  9  航行体穿过孔洞时空泡的形态变化

    Figure  9.  Morphological variation of cavitation during vehicle passing through the hole

    图  10  航行体穿过冰层孔洞的初期流场变化

    Figure  10.  Initial flow field variation during vehicle passing through the ice hole

    图  11  航行体穿过水下孔洞时受到的水动力

    Figure  11.  Hydrodynamic force on the vehicle when passing through the underwater hole

    图  12  航行体穿过水下孔洞时的速度变化

    Figure  12.  Velocity variation of the vehicle when passing through the underwater hole

    图  13  航行体穿过水下孔洞时的位移变化

    Figure  13.  Displacement variation of the vehicle when passing through the underwater hole

    表  1  实验用航行体参数

    Table  1.   Parameters of experimental vehicle

    参数数值
    直径/m0.045
    总长/m0.214
    锥角/(°)96.000
    密度/(g/cm3)2.630
    速度/(m/s)10.500
    下载: 导出CSV
  • [1] LIU Y, LU H, LI Y, et al. A review of treatment technologies for produced water in offshore oil and gas fields[J]. Science of the Total Environment, 2021, 775: 145485. doi: 10.1016/j.scitotenv.2021.145485
    [2] ACHEAMPONG T, KEMP A G. Health, safety and environmental (HSE) regulation and outcomes in the offshore oil and gas industry: Performance review of trends in the United Kingdom Continental Shelf[J]. Safety Science, 2022, 148: 105634. doi: 10.1016/j.ssci.2021.105634
    [3] KAPOOR A, FRASER G S, CARTER A. Marine conservation versus offshore oil and gas extraction: Reconciling an intensifying dilemma in Atlantic Canada[J]. The Extractive Industries and Society, 2021, 8: 100978. doi: 10.1016/j.exis.2021.100978
    [4] CRIVELLARI A, BONVICINI S, TUGNOLI A, et al. Key performance indicators for environmental contamination caused by offshore oil spills[J]. Process Safety and Environmental Protection, 2021, 153: 60-74. doi: 10.1016/j.psep.2021.06.048
    [5] ALAPPATTU D P, WANG Q. Correction of depth bias in upper-ocean temperature and salinity profiling measurements from airborne expendable probes[J]. Journal of Atmospheric and Cceanic Technology, 2015, 32: 247-255. doi: 10.1175/JTECH-D-14-00114.1
    [6] PALMER M D, BOYER T, COWLEY R, et al. An algorithm for classifying unknown expendable bathythermograph (XBT) instruments based on existing metadata[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35: 429-440. doi: 10.1175/JTECH-D-17-0129.1
    [7] TAN Z, RESEGHETTI F, ABRAHAM J, et al. Examining the influence of recording system on the pure temperature error in XBT data[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38: 759-776. doi: 10.1175/JTECH-D-20-0136.1
    [8] MAKI T, HORIMOTO H, ISHIHARA T, et al. Autonomous tracking of sea turtles based on multibeam imaging sonar: toward robotic observation of marine life [J]. IFAC Papers On Line, 2019, 52-21: 86-90.
    [9] JUDY M. Determining feeding events and prey encounter rates in a southern elephant seal: A method using swim speed and stomach temperature[J]. Marine Mammal Science, 2008, 24: 207-217. doi: 10.1111/j.1748-7692.2007.00156.x
    [10] IWATA T, SAKAMOTO K Q, EDWARDS E W J, et al. The influence of preceding dive cycles on the foraging decisions of Antarctic fur seals[J]. Biology Letters, 2015, 11: 20150227. doi: 10.1098/rsbl.2015.0227
    [11] LIU G, TALALAY P, WANG R, et al. Design parameters of hot-water drilling systems[J]. Water, 2019, 11: 289. doi: 10.3390/w11020289
    [12] TALALAY P, LIU G, WANG R, et al. Shallow hot-water ice drill: Estimation of drilling parameters and testing[J]. Cold Regions Science and Technology, 2018, 155: 11-19. doi: 10.1016/j.coldregions.2018.07.006
    [13] HONG J, FAN X, LIU Y, et al. Size distribution and shape characteristics of ice cuttings produced by an electromechanical auger drill[J]. Cold Regions Science and Technology, 2015, 119: 204-210. doi: 10.1016/j.coldregions.2015.08.012
    [14] 王岳扬, 陈绍露, 龙镜冰, 等. 带泡沫头帽圆柱体入水机理试验研究[J]. 振动与冲击, 2024, 43(20): 263-274.

    WANG Y Y, CHEN S L, LONG J B, et al. An experimental study on the water entry mechanism of a cylinder with foam cap[J]. Journal of Vibration and Shock, 2024, 43(20): 263-274.
    [15] 彭睿哲, 冯和英, 向敏, 等. 头部喷气式超空泡航行体垂直入水性能研究[J]. 振动与冲击, 2024, 43(20): 238-246.

    PENG R Z, FENG H Y, XIANG M, et al. A study on the vertical water entry performance of a head jet supercavitating navigation body[J]. Journal of Vibration and Shock, 2024, 43(20): 238-246.
    [16] 刘喜燕, 袁绪龙, 罗凯, 等. 预置舵角对跨介质航行体入水尾拍运动影响试验[J]. 兵工学报, 2023, 44(06): 1632-1642.

    LIU X Y, YUAN X L, LUO K, et al. Experimental investigation of the influence of preset rudder angle on tail-slapping of a trans-media vehicle during water entry[J]. Acta Armament arii, 2023, 44(06): 1632-1642.
    [17] 黄振贵, 范浩伟, 那晓冬, 等. 空心弹高速斜入水弹道稳定性研究[J]. 力学学报, 2024, 56(9): 2579-2595.

    HUABF Z G, FAN H W, NA X D, et al. Study on the ballistic stability of hollow projectial during high-speed oblique water entry[J]. Journal of Mechanics, 2024, 56(9): 2579-2595.
    [18] 魏海鹏, 韩阔屹, 赵雷洋, 等. 基于密度分层的泡沫头帽降载机理及入水运动特性研究[J]. 力学学报, 2025, 57(4): 916-928.

    WEI H P, HAN K Y, ZHAO L Y, et al. Research on load reduction mechanism and water entry movement characteristics of foam head cap based on density delamination[J]. Journal of Mechanics, 2025, 57(4): 916-928.
    [19] 刘想炎, 于楠, 黄振贵, 等. 不同入水攻角下高速射弹的流固耦合特性[J]. 兵工学报, 2024, 45(10): 3415-3429.

    LIU X Y, YU N, HUANG Z G, et al. Characteristics of fluid-structure interaction of high-speed projectile at different angles of attack during water entry[J]. Armament Arii, 2024, 45(10): 3415-3429.
    [20] 刘陈, 吕续舰, 李胜男, 等. 串列双圆柱倾斜入水试验研究[J]. 弹道学报, 2024, 36(2): 90-97.

    LIU C, LV X J, LI S N, et al. Experimental study on oblique water entry of two tandem cylinders[J]. Journal of Ballistics, 2024, 36(2): 90-97.
    [21] 甄梓坤, 邹志辉, 蒋运华. 气射流协助圆盘头部航行体入水空泡特性实验研究[J]. 水下无人系统学报, 2024, 32(3): 489-495.

    ZHEN Z K, ZOU Z H, JIANG Y H. Experimental investigation on cavity characteristics during water entry of disc-headed vehicle assisted by gas jet flow[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 489-495.
    [22] ZHANG Y F, MA S, SHAO W B, et al. Numerical investigation on the water entry of curved wedge-shaped sections into waves[J]. Ocean Engineering, 2023, 275: 114155. doi: 10.1016/j.oceaneng.2023.114155
    [23] ZHOU B J, ZHAO Z J, DAI Q, et al. Numerical study on the cavity dynamics of water entry and exit for a high-speed projectile crossing a wave[J]. Physics of Fluids, 2024, 36: 063321. doi: 10.1063/5.0212804
    [24] HUANG Q G, WANG C, SHI Y, et al. Study of the cavity and hydrodynamic characteristics of water entry for projectiles with different wave parameters[J]. Ocean Engineering, 2024, 313: 119441. doi: 10.1016/j.oceaneng.2024.119441
    [25] WANG C, HUANG Q G, LU L, et al. Numerical investigation of water entry characteristics of a projectile in the wave environment[J]. Ocean Engineering, 2024, 294: 116821 doi: 10.1016/j.oceaneng.2024.116821
    [26] LI Z P, SUN L Q, YAO X L, et al. Experimental study on cavity dynamics in high Froude number water entry for different nosed projectiles [J]. Applied Ocean Research. 2020, 102: 102305.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-10
  • 修回日期:  2025-07-13
  • 录用日期:  2025-08-18
  • 网络出版日期:  2025-11-24

目录

    /

    返回文章
    返回
    服务号
    订阅号