• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下仿生感知技术的发展及应用

刘一函 王思远 徐鹏

刘一函, 王思远, 徐鹏. 水下仿生感知技术的发展及应用[J]. 水下无人系统学报, 2025, 33(6): 1-14 doi: 10.11993/j.issn.2096-3920.2025-0075
引用本文: 刘一函, 王思远, 徐鹏. 水下仿生感知技术的发展及应用[J]. 水下无人系统学报, 2025, 33(6): 1-14 doi: 10.11993/j.issn.2096-3920.2025-0075
LIU Yihan, WANG Siyuan, XU Peng. Development and Application of Underwater Biomimetic Perception Technology[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0075
Citation: LIU Yihan, WANG Siyuan, XU Peng. Development and Application of Underwater Biomimetic Perception Technology[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0075

水下仿生感知技术的发展及应用

doi: 10.11993/j.issn.2096-3920.2025-0075
基金项目: 国家自然科学基金项目资助(52401399).
详细信息
    作者简介:

    刘一函(1988-), 女, 工程师, 主要研究方向为流体力学

  • 中图分类号: U674.941; TJ630.32

Development and Application of Underwater Biomimetic Perception Technology

  • 摘要: 随着水下技术的不断发展, 水下仿生感知技术已成为推动海洋科学和技术发展的重要手段之一。水下仿生感知技术通过模仿水生生物的感知机制, 如海豹胡须感知、鱼类侧线系统及章鱼触手感知等, 可帮助水下机器人、可穿戴设备或其他水下系统实现更精确的目标识别、定位和信息采集能力。文中回顾了水下仿生感知技术的研究现状与发展历程, 重点介绍了仿生传感器的设计原理、材料选择及其在水下目标感知、水下机器人导航与避障及可穿戴设备中的应用。同时也探讨了水下仿生感知技术的实际应用前景及其面临的挑战, 展望了其在未来水下机器人、海洋探测与环境监测等领域的广阔应用前景。最后, 提出了进一步提升水下仿生感知技术性能、扩大其应用范围的可能方向。

     

  • 图  1  海豹胡须结构示意图

    Figure  1.  Schematic diagram of seal whisker structure

    图  2  鱼类侧线结构示意图

    Figure  2.  Schematic diagram of fish lateral line structure

    图  3  章鱼触手吸盘结构示意图

    Figure  3.  Schematic diagram of octopus tentacle suction cup structure

    图  4  基于仿生鱼类侧线系统的多模态水下传感器

    Figure  4.  Multi modal underwater sensor based on biomimetic fish lateral line system

    图  5  基于光纤布拉格光栅的仿生海豹胡须传感器

    Figure  5.  Bioinspired Whisker Sensor Based on Orthometric FBGs

    图  6  人工侧线系统传感器阵列排布优化

    Figure  6.  Optimization of sensor array layout for artificial sideline system

    图  7  水下目标的预测和实际相对位置

    Figure  7.  Prediction and actual relative position of underwater targets

    图  8  多传感器数据融合策略

    Figure  8.  Multi sensor data fusion strategy

    图  9  基于TA-LSTM方法的导航过程

    Figure  9.  Navigation process based on TA-LSTM method

    图  10  基于水下仿生胡须传感器的目标跟踪

    Figure  10.  Target tracking based on underwater biomimetic whisker sensor

    图  11  基于仿生手掌状触觉传感器的目标识别

    Figure  11.  Target recognition based on biomimetic palm shaped tactile sensor

    图  12  基于胡须阵列结构的仿生流体动力学传感器

    Figure  12.  Biomimetic fluid dynamics sensor based on beard array structure

    图  13  基于液态金属传感器的仿生鱼鳍结构

    Figure  13.  Biomimetic fish fin structure based on liquid metal sensor

    图  14  基于摩擦纳米发电机的水下仿生侧线传感器

    Figure  14.  Underwater biomimetic lateral line sensor based on triboelectric nanogenerator

    图  15  基于摩擦电纳米发电机的水下仿生触觉传感器

    Figure  15.  Underwater biomimetic tactile sensor based on triboelectric nanogenerator

    图  16  基于仿生结构的可穿戴离子电子触觉传感器

    Figure  16.  Wearable ion electronic tactile sensor based on biomimetic structure

    图  17  基于仿生鲨鱼皮的发光皮肤

    Figure  17.  Luminous skin based on biomimetic shark skin

    图  18  多功能仿生层压结构传感器

    Figure  18.  Multi functional biomimetic laminated structure sensor

  • [1] 陈旭光, 寇海磊, 牛小东, 等. 深海水下技术装备发展研究[J]. 中国工程科学, 2024, 26(2): 1-14.
    [2] 韦韬, 朱遴, 梁世龙. 水下无人系统集群感知与协同技术发展[J]. 指挥控制与仿真, 2022, 44(5): 6-13.

    WEI T, ZHU L, LIANG S L. Research on perception and cooperation technologies for underwater unmanned system swarm[J]. Command Control & Simulation, 2022, 44(5): 6-13.
    [3] 方尔正, 黄志浩, 桂晨阳. 水面水下目标识别技术的现状与挑战[J]. 国防科技工业, 2020(7): 66-68.
    [4] HEIDEMANN J, STOJANOVIC M, ZORZI M. Underwater sensor networks: applications, advances and challenges[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1958): 158-175. doi: 10.1098/rsta.2011.0214
    [5] SUN Y, YANG Y, YAO D, et al. Biomimetic multilayer flexible sensors for multifunctional underwater sensing[J]. Chemical Engineering Journal, 2024, 492: 152273. doi: 10.1016/j.cej.2024.152273
    [6] RADHAKRISHNAN S, JOSEPH S, JELMY E J, et al. Triboelectric nanogenerators for marine energy harvesting and sensing applications[J]. Results in Engineering, 2022, 15: 100487. doi: 10.1016/j.rineng.2022.100487
    [7] XIA Q, SONG N, LIU C, et al. Current development of bionic flexible sensors applied to marine flow field detection[J]. Sensors and Actuators A: Physical, 2023, 351: 114158. doi: 10.1016/j.sna.2023.114158
    [8] JIANG G, HU Q, PENG H, et al. Underwater moving object localisation based on weak electric fish bionic sensing principle and LSTM[C]//2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2021: 744-749.
    [9] CONG Y, GU C, ZHANG T, et al. Underwater robot sensing technology: A survey[J]. Fundamental Research, 2021, 1(3): 337-345. doi: 10.1016/j.fmre.2021.03.002
    [10] LIU G, WANG A, WANG X, et al. A review of artificial lateral line in sensor fabrication and bionic applications for robot fish[J]. Applied bionics and biomechanics, 2016, 2016(1): 4732703.
    [11] SUN K, CUI W, CHEN C. Review of underwater sensing technologies and applications[J]. Sensors, 2021, 21(23): 7849. doi: 10.3390/s21237849
    [12] ZHAO Z, YANG Q, LI R, et al. A comprehensive review on the evolution of bio-inspired sensors from aquatic creatures[J]. Cell Reports Physical Science, 2024, 5(7): 102064. doi: 10.1016/j.xcrp.2024.102064
    [13] ZHENG X, KAMAT A M, CAO M, et al. Creating underwater vision through wavy whiskers: A review of the flow-sensing mechanisms and biomimetic potential of seal whiskers[J]. Journal of the Royal Society Interface, 2021, 18(183): 20210629. doi: 10.1098/rsif.2021.0629
    [14] BEEM H R, TRIANTAFYLLOU M S. Wake-induced ‘slaloming’ response explains exquisite sensitivity of seal whisker-like sensors[J]. Journal of Fluid Mechanics, 2015, 783: 306-322. doi: 10.1017/jfm.2015.513
    [15] DEHNHARDT G, MAUCK B, BLECKMANN H. Seal whiskers detect water movements[J]. Nature, 1998, 394(6690): 235-236. doi: 10.1038/28303
    [16] DEHNHARDT G, MAUCK B, HANKE W, et al. Hydrodynamic trail-following in harbor seals(Phoca vitulina)[J]. Science, 2001, 293(5527): 102-104. doi: 10.1126/science.1060514
    [17] SCHULTE-PELKUM N, WIESKOTTEN S, HANKE W, et al. Tracking of biogenic hydrodynamic trails in harbour seals(Phoca vitulina)[J]. Journal of Experimental Biology, 2007, 210(5): 781-787. doi: 10.1242/jeb.02708
    [18] BLECKMANN H, ZELICK R. Lateral line system of fish[J]. Integrative Zoology, 2009, 4(1): 13-25. doi: 10.1111/j.1749-4877.2008.00131.x
    [19] RIZZI F, QUALTIERI A, DATTOMA T, et al. Biomimetics of underwater hair cell sensing[J]. Microelectronic Engineering, 2015, 132: 90-97. doi: 10.1016/j.mee.2014.10.011
    [20] CURCIC-BLAKE B, VAN NETTEN S M. Source location encoding in the fish lateral line canal[J]. Journal of Experimental Biology, 2006, 209(8): 1548-59. doi: 10.1242/jeb.02140
    [21] RISTROPH L, LIAO J C, ZHANG J. Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish[J]. Physical Review Letters, 2015, 114(1): 018102. doi: 10.1103/PhysRevLett.114.018102
    [22] ALLARD C A H, KANG G, KIM J J, et al. Structural basis of sensory receptor evolution in octopus[J]. Nature, 2023, 616(7956): 373-377. doi: 10.1038/s41586-023-05822-1
    [23] MOSTAFA A A M. Octopus senses: from genes to behavior[D]. Napoli: Università degli Studi di Napoli Federico II Institutional Repository, 2021.
    [24] BURESCH K C, SKLAR K, CHEN J Y, et al. Contact chemoreception in multi-modal sensing of prey by Octopus[J]. Journal of Comparative Physiology A, 2022, 208(3): 435-442. doi: 10.1007/s00359-022-01549-y
    [25] BURESCH K C, HUGET N D, BRISTER W C, et al. Evidence for tactile 3D shape discrimination by octopus[J]. Journal of Comparative Physiology A, 2024, 210(5): 815-823. doi: 10.1007/s00359-024-01696-4
    [26] SOARES D. An ancient sensory organ in crocodilians[J]. Nature, 2002, 417(6886): 241-242. doi: 10.1038/417241a
    [27] STROBEL S M K, MILLER M A, MURRAY M J, et al. Anatomy of the sense of touch in sea otters: Cutaneous mechanoreceptors and structural features of glabrous skin[J]. The Anatomical Record, 2022, 305(3): 535-555. doi: 10.1002/ar.24739
    [28] Von Der Emde G. Distance and shape: Perception of the 3-dimensional world by weakly electric fish[J]. Journal of Physiology-Paris, 2004, 98(1-3): 67-80. doi: 10.1016/j.jphysparis.2004.03.013
    [29] SHU S, WANG T, HE J, et al. Bionic underwater multimodal sensor inspired by fish lateralis neuromasts[J]. Device, 2023, 1(5).
    [30] WANG J, WANG A, NIU C, et al. Bio-inspired whisker sensor based on orthometric FBGs for underwater applications[J]. IEEE Transactions on Instrumentation and Measurement, 2024.
    [31] LI Y, LIU B, XU P, et al. A palm-like 3D tactile sensor based on liquid-metal triboelectric nanogenerator for underwater robot gripper[J]. Nano Research, 2024, 17(11): 10008-16. doi: 10.1007/s12274-024-6903-3
    [32] LI Y, TIAN Z, LI C, et al. Bionic light-responsive hydrogel actuators with multiple-freedom motions in water environments[J]. Nano Energy, 2024, 130: 110130. doi: 10.1016/j.nanoen.2024.110130
    [33] YAO W, LIN X, ZHANG Z, et al. Pursuing superhydrophobic flexible strain sensors: from design to applications[J]. Advanced Materials Technologies, 2024, 9(9): 2301983. doi: 10.1002/admt.202301983
    [34] SUN Y, HU Z, TANG A, et al. Bioinspired waterproof and self-healing Photonic-Ionic skin for underwater interactive sensing[J]. Chemical Engineering Journal, 2024, 497: 154495. doi: 10.1016/j.cej.2024.154495
    [35] XU D, ZHANG Y, TIAN J, et al. Optimal sensor placement of the artificial lateral line for flow parametric identification[J]. Sensors, 2021, 21(12): 3980. doi: 10.3390/s21123980
    [36] CHEN H, LI Y, XU P, et al. Octopus-inspired soft gripper with embedded triboelectric tactile sensor for underwater target recognition and grasp[J]. Nano Energy, 2025, 140: 111007. doi: 10.1016/j.nanoen.2025.111007
    [37] FU T, HU Q, JIANG G, et al. Underwater source localization using a distributed composite artificial lateral line system with pressure and active electric sensing fusion[J]. Mechanical Systems and Signal Processing, 2025, 223: 111904. doi: 10.1016/j.ymssp.2024.111904
    [38] GENG B, XUE Q, XU Z, et al. Biomimetic seal whisker sensors for high-sensitivity wake detection and localization[J]. Bioinspiration & Biomimetics, 2025, 20(3): 036013.
    [39] MAO Y, CHANG H, WANG Y, et al. A comparative study on the wake sensing mechanism of a seal whisker-shaped cylinder[J]. Sensors, 2025, 25(11): 3529. doi: 10.3390/s25113529
    [40] JIANG Y, MA Z, FU J, et al. Development of a flexible artificial lateral line canal system for hydrodynamic pressure detection[J]. Sensors, 2017, 17(6): 1220. doi: 10.3390/s17061220
    [41] PAN L, CHORTOS A, YU G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J]. Nature communications, 2014, 5(1): 3002. doi: 10.1038/ncomms4002
    [42] JEONG T, YOO J, KIM D. Deep learning model inspired by lateral line system for underwater object detection[J]. Bioinspiration & biomimetics, 2022, 17(2): 026002.
    [43] ELMEZAIN M, SAOUD L S, SULTAN A, et al. Advancing underwater vision: A survey of deep learning models for underwater object recognition and tracking[J]. IEEE Access, 2025, 13: 17830-67. doi: 10.1109/ACCESS.2025.3534098
    [44] LI J, JIA Q, CUI X, et al. Automatic modulation recognition of underwater acoustic signals using a two-stream transformer[J]. IEEE Internet of Things Journal, 2024, 11(10): 18839-51. doi: 10.1109/JIOT.2024.3367852
    [45] LI A, GUO S, LI C. Artificial lateral lines-based an active obstacle recognition strategy and performance evaluation for bionic underwater robots[J]. IEEE Sensors Journal, 2024, 24(16): 26266-77. doi: 10.1109/JSEN.2024.3417809
    [46] YANG S, ZHANG X, ZHANG S, et al. A bionic data-driven approach for long-distance underwater navigation with anomaly resistance[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 8503014.
    [47] WANG S, XU P, WANG X, et al. Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception[J]. Nano Energy, 2022, 97: 107210. doi: 10.1016/j.nanoen.2022.107210
    [48] XU P, LIU J, LIU X, et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception[J]. npj Flexible Electronics, 2022, 6(1): 25. doi: 10.1038/s41528-022-00160-0
    [49] DAI H, ZHANG C, HU H, et al. Biomimetic hydrodynamic sensor with whisker array architecture and multidirectional perception ability[J]. Advanced Science, 2024, 11(38): 2405276. doi: 10.1002/advs.202405276
    [50] SUN W, WANG G, YUAN F, et al. A biomimetic fish finlet with a liquid metal soft sensor for proprioception and underwater sensing[J]. Bioinspiration & Biomimetics, 2021, 16(6): 065007.
    [51] LIU J, XU P, LIU B, et al. Underwater biomimetic lateral line sensor based on triboelectric nanogenerator for dynamic pressure monitoring and trajectory perception[J]. Small, 2024, 20(19): 2308491. doi: 10.1002/smll.202308491
    [52] LIU J, XU P, ZHENG J, et al. Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance[J]. Nano Energy, 2022, 101: 107633. doi: 10.1016/j.nanoen.2022.107633
    [53] SUN G, WANG P, JIANG Y, et al. Bioinspired flexible, breathable, waterproof and self-cleaning iontronic tactile sensors for special underwater sensing applications[J]. Nano Energy, 2023, 110: 108367. doi: 10.1016/j.nanoen.2023.108367
    [54] XU X, YAN B. Bionic luminescent skin as ultrasensitive temperature‐acoustic sensor for underwater information perception and transmission[J]. Advanced Materials, 2024, 36(4): 2309328. doi: 10.1002/adma.202309328
  • 加载中
图(18)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-07-07
  • 录用日期:  2025-07-16
  • 网络出版日期:  2025-11-28

目录

    /

    返回文章
    返回
    服务号
    订阅号