Design of Cross-Domain Relay Buoy Communication System Based on Multi-Source Communication Links
-
摘要: 针对现有深海潜标通信方式存在的通信模式有限、可靠性低、扩展性弱及功耗高等问题, 提出一种基于多源通信链路的跨域中继浮标通信系统设计方法。首先, 介绍了浮标通信系统的组成、工作原理及工作模式, 并阐述了具备多源通信手段和高扩展性的系统硬件设计方案; 其次, 提出一种最优通信链路选择策略, 该策略能够根据各通信链路实时状态完成最优通信链路的动态选择, 从而提升系统通信可靠性和稳定性, 同时, 引入了数据重发机制, 以有效应对通信中断、数据丢包等通信异常情况, 进而确保系统通信准确性与完整性; 最后, 对系统电源管理与功耗优化进行设计, 并提出了一种低功耗控制策略, 以实现系统电源精细化控制与低功耗运行。试验结果表明, 文中所提浮标通信系统设计方法有效可行, 可解决深海潜标通信问题, 实现远距离实时数据传输, 为水下探测装备信息传输提供技术支撑。Abstract: Aiming at the problems of limited communication modes, low reliability, weak scalability, and high power consumption existing in deep-sea submersible communication methods, this paper proposed a cross-domain relay buoy communication system design method based on multi-source communication links. Firstly, the composition, working principle, and working mode of the buoy communication system were introduced, and the system hardware design scheme with multiple communication methods and high scalability was described. Secondly, an optimal communication link selection strategy was proposed, which could dynamically select the optimal communication link according to the real-time status of each link, so as to improve the reliability and stability of system communication. Additionally, the data retransmission mechanism was introduced to effectively address the abnormal communication problems such as communication interruption and data packet loss, so as to ensure the accuracy and integrity of system communication. Finally, the system power management and power consumption optimization were designed, and a low-power control strategy was proposed to realize the refined management of system power supply and efficient low-power operation. Experimental results demonstrate that the design method of the buoy communication system proposed in this paper is effective and feasible, which can effectively solve the problems existing in the deep-sea submersible communication, achieve real-time data transmission over long distances, and provide technical support for improving the information transmission ability of underwater detection equipment.
-
表 1 数据包接收统计结果
Table 1. Statistics results of data packet reception
帧 组别 北斗
接收数天通
接收数无线数传
接收数感应耦合
接收数水声
接收数1 100 — — 100 — 2 — 100 — 100 — 3 — — 100 100 — 4 100 — — — 100 5 — 100 — — 100 6 — — 100 — 100 表 2 数据包发送统计结果
Table 2. Statistics result of data packet transmission
帧 组别 感应耦合
发送数水声
发送数北斗
发送数天通
发送数无线数传
发送数1 100 — 100 — — 2 100 — — 100 — 3 100 — — — 100 4 — 100 100 — — 5 — 100 — 100 — 6 — 100 — — 100 表 3 水下通信链路数据包发送统计结果
Table 3. Statistics results of the number of data packets transmitted by underwater communication links
组别 浮标发送
数/帧感应耦合
发送数/帧感应耦合
禁用数/次水声发送
数/帧水声禁用
数/次1 100 100 0 0 0 2 100 50 50 50 0 3 100 100 0 0 0 表 4 水上通信链路数据包发送统计结果
Table 4. Statistics results of the number of data packets transmitted by air wireless communication links
组别 北斗发送
数/帧北斗禁用
数/次天通发送
数/帧天通禁用
数/次无线数传
发送数/帧无线数传
禁用数/次控制中心
接收数/帧1 100 0 0 0 0 0 100 2 90 10 10 0 0 0 100 3 90 10 0 100 10 0 100 表 5 数据包重传统计结果
Table 5. Statistics results of the number of data packet transmitted
组别 浮标接收
数/帧感应耦合
注入数/次感应耦合
禁用数/次感应耦合
重传数/次北斗注入
数/次北斗禁用
数/次北斗重传
数/次控制中心
接收数/帧1 20 5 5 13 0 0 0 20 2 20 0 0 0 5 5 11 20 表 6 功耗测试对比结果
Table 6. Comparison results of power consumption test
功耗管控
方案北斗发送
数/次天通发送
数/次无线数传
发送数/次水声发送
数/次感应耦合
发送数/次综合功耗
/(W·h)对照组 100 100 100 100 100 56.1 测试组 100 100 100 100 100 22.8 表 7 上行通信数据包发送情况统计结果
Table 7. Statistics results of uplink communication data packet transmission
帧 组别 潜标电子舱
发送数浮标感应耦合
发送数浮标水声通信
发送数浮标北斗
发送数浮标天通
发送数浮标无线数传
发送数控制中心
接收数1 60 60 0 69 0 0 58 2 60 63 1 66 2 0 60 3 60 60 0 60 0 0 60 4 60 — 58 — — 81 53 表 8 下行通信数据包接收情况统计结果
Table 8. Statistical results of downlink communication data packet reception
帧 组别 控制中心
发送数浮标北斗
接收数浮标天通
接收数浮标无线数传
接收数浮标感应耦合
接收数浮标水声通信
接收数潜标电子舱
接收数1 24 24 0 0 24 0 24 2 26 — 25 1 26 0 26 3 20 — — 17 — 17 17 -
[1] 江帆, 魏兆强, 马昕, 等. 低功耗双处理器漂流浮标系统[J]. 海洋技术学报, 2023, 42(5): 44-55.JIANG F, WEI Z Q, MA X, et al. Low power dual processor drifting buoy system[J]. Journal of Ocean Technology, 2023, 42(5): 44-55. [2] 商志刚, 张红玉, 刘凇佐, 等. 空海跨域通信研究现状与发展趋势[J]. 水下无人系统学报, 2024, 32(4): 592-610.SHANG Z G, ZHANG H Y, LIU S Z, et al. Research progress and development trend of air-sea cross-domain communication[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 592-610. [3] 李楠, 黄汉清, 赵晓. 水下实时观测潜标系统技术发展[J]. 数字海洋与水下攻防, 2021, 4(2): 99-106.LI N, HUANG H Q, ZHAO X. Research on technology development of underwater real-time observation submerged buoy system[J]. Digital Ocean & Underwater Warfare, 2021, 4(2): 99-106. [4] LUO H J, WANG J L, BU F F, et al. Recent progress of air/water cross-boundary communications for underwater sensor networks: A review[J]. IEEE Sensors Journal, 2022, 22(9): 8360-8382. doi: 10.1109/JSEN.2022.3162600 [5] 商志刚, 徐晓帆, 梁萱卓, 等. 基于卫星链路的空海跨域通信系统设计[J]. 电信网技术, 2021, 47(10): 63-67.SHANG Z G, XU X F, LIANG X Z, et al. Design of air-sea cross-domain communication system based on satellite links[J]. Information and Communications Technology and Policy, 2021, 47(10): 63-67. [6] CHEN H L, YIN F, HUANG W, et al. Ocean surface drifting buoy system based on UAV-enabled wireless powered relay network[J]. Sensors, 2020, 20(9): 1-25. doi: 10.1109/JSEN.2020.2983271 [7] 张睿. 一种低功耗跨域通信浮标系统设计[J]. 水下无人系统学报, 2024, 32(4): 724-729.ZHANG R. Design of a low-power cross-domain communication buoy system[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 724-729. [8] 杨义军, 姚俊辉, 陈东升, 等. 极浅海域波浪滑翔器跨介质通信实验[J]. 数字海洋与水下攻防, 2022, 5(4): 307-312.YANG Y J, YAO J H, CHEN D S, et al. Cross-medium communication experiment of wave glider in extremely shallow sea[J]. Digital Ocean and Underwater Warfare, 2022, 5(4): 307-312. [9] ALBALADEJO C, SOTO F, TORRES R, et al. A low-cost sensor buoy system for monitoring shallow marine environments[J]. Sensors, 2012, 12(7): 9613-9634. doi: 10.3390/s120709613 [10] REDDY V A, STÜBER G L. Wi-buoy: An energy-efficient wire-less buoy network for real-time high-rate marine data acquisition[J]. IEEE Access, 2021, 9: 130586-130600. doi: 10.1109/ACCESS.2021.3113646 [11] 张茜, 张少永, 高超, 等. 基于北斗通信的海洋多要素观测系统设计[J]. 海洋技术学报, 2019, 38(3): 28-33.ZHANG X, ZHANG S Y, GAO C, et al. Design of a marine multi-element observation system based on Beidou communication[J]. Journal of Ocean Technology, 2019, 38(3): 28-33. [12] 于非, 陈永华, 周春, 等. 国产深海准实时传输潜标系统设计[J]. 海洋科学, 2020, 44(7): 194-200.YU F, CHEN Y H, ZHOU C, et al. Design of deep-sea quasi-real-time-communication submerged buoy systems[J]. Marine Sciences, 2020, 44(7): 194-200. [13] LIU Y, XU Y Z. Application of Iridium data communica-tion system in information transmission of ocean monitoring buoy[C]//Proceedings of the International Conference on Multimedia Technology and Enhanced Learning(ICMTEL). Leicester, UK: Springer, 2020: 461-471. [14] 邢铭涵, 商志刚, 乔钢, 等. 基于最优通信链路选择的跨域通信浮标系统[J]. 水下无人系统学报, 2024, 32(4): 650-658.XING M H, SHANG Z G, QIAO G, et al. Cross-domain communication buoy system based on optimal communication link selection[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 650-658. [15] 肖龙忠, 张松, 刘振吉, 等. 基于短波天波传播的远海跨域浮标通信技术[J]. 水下无人系统学报, 2024, 32(4): 718-723.XIAO L Z, ZHANG S, LIU Z J, et al. Communication technology of far-sea cross-domain buoys based on high frequency sky-wave propagation[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 718-723. [16] 钱帆, 赵启兵, 蒋婷婷, 等. 基于5G通信与北斗短报文的近海小型浮标通信系统设计方法[J]. 兵工自动化, 2024, 43(3): 42-47.QIAN F, ZHAO Q B, JIANG T T, et al. A design method of offshore small buoy communication system based on 5G communication and Beidou short message[J]. Ordnance Industry Automation, 2024, 43(3): 42-47. [17] 蔺本浩, 汪东平, 董彦凯, 等. 基于水下绞车的实时传输潜标研制及海上试验[J]. 海洋技术学报, 2024, 43(2): 27-35.LIN B H, WANG D P, DONG Y K, et al. Design and sea trial of real-time communication subsurface mooring system based on underwater winch[J]. Journal of Ocean Technology, 2024, 43(2): 27-35. [18] 马凤强, 吕婷婷, 张浩. 应用于智能浮标的北斗铱星双模通信系统设计[J]. 传感器与微系统, 2021, 40(5): 107-110.MA F Q, LÜ T T, ZHANG H. Design of Beidou and Iridium dual-mode communication system for smart float[J]. Transducer and Microsystem Technologies, 2021, 40(5): 107-110. -

下载: