• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的水下近场爆炸作用下钢筋混凝土板损伤预测

薛铮淳 陈建宇 沈隆瀚

薛铮淳, 陈建宇, 沈隆瀚. 基于机器学习的水下近场爆炸作用下钢筋混凝土板损伤预测[J]. 水下无人系统学报, 2025, 33(5): 856-864 doi: 10.11993/j.issn.2096-3920.2025-0059
引用本文: 薛铮淳, 陈建宇, 沈隆瀚. 基于机器学习的水下近场爆炸作用下钢筋混凝土板损伤预测[J]. 水下无人系统学报, 2025, 33(5): 856-864 doi: 10.11993/j.issn.2096-3920.2025-0059
XUE Zhengchun, Chen Jianyu, SHEN Longhan. Damage Prediction of Reinforced Concrete Slab under Underwater Near-Field Explosion Based on Machine Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(5): 856-864. doi: 10.11993/j.issn.2096-3920.2025-0059
Citation: XUE Zhengchun, Chen Jianyu, SHEN Longhan. Damage Prediction of Reinforced Concrete Slab under Underwater Near-Field Explosion Based on Machine Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(5): 856-864. doi: 10.11993/j.issn.2096-3920.2025-0059

基于机器学习的水下近场爆炸作用下钢筋混凝土板损伤预测

doi: 10.11993/j.issn.2096-3920.2025-0059
详细信息
    作者简介:

    薛铮淳(2000-), 男, 在读硕士, 主要研究方向为水下爆炸结构损伤

    通讯作者:

    陈建宇(1991-), 男, 副教授, 主要研究方向为计算固体力学.

  • 中图分类号: TJ630, U663

Damage Prediction of Reinforced Concrete Slab under Underwater Near-Field Explosion Based on Machine Learning

  • 摘要: 钢筋混凝土(RC)板是水下结构典型承重构件, 其水下爆炸损伤预测是工程防护领域的研究难点, 对结构健康状态监测、抗爆设计及安全性评估至关重要。文中提出一种将数值仿真与机器学习相结合的损伤预测新方法。首先, 基于LS-DYNA软件建立流固耦合模型, 采用任意拉格朗日-欧拉(ALE)算法模拟不同爆炸当量与距离下RC板的动态响应及损伤范围; 其次, 基于深度神经网络(DNN)构建损伤预测模型, 通过优化隐藏层结构与神经元配置, 显著提升精度(超98%)并避免过拟合; 进一步引入卷积神经网络(CNN)实现损伤图像自动识别, 大幅提高损伤预测效率。研究发现, RC板损伤区域在一定范围内呈现几何规律性。文中方法为水下爆炸损伤评估提供了新思路, 对防护工程设计具有一定参考价值。

     

  • 图  1  RHT本构模型失效面

    Figure  1.  Failure surface of RHT constitutive model

    图  2  RC板水下近场爆炸有限元模型

    Figure  2.  Finite element model of underwater near-field explosion of reinforced concrete slab

    图  3  有限元仿真与试验结果对照图

    Figure  3.  Comparison of finite element simulation and test results

    图  4  神经网络结构示意图

    Figure  4.  Structural diagram of neural network

    图  5  炸药当量、爆炸距离、损伤范围三维数据库分布图

    Figure  5.  Three-dimensional database distribution map of explosive yield, explosion distance, and damage range

    图  6  m=0.207 kg, d=0.32 m时RC板损伤预测结果与有限元结果对比

    Figure  6.  Comparison of RC slab damage prediction results with finite element results when m=0.207 kg and d=0.32 m

    图  7  m=0.207 kg, d=0.32 m时RC板损伤轮廓

    Figure  7.  Damage outline of RC slab when m=0.207 kg, d=0.32 m

    图  8  3种神经网络模型预测结果与有限元结果对比

    Figure  8.  Comparison between prediction results of three neural network models and finite element results

    图  9  3种神经网络模型收敛效果对比

    Figure  9.  Comparison of convergence effects of three neural network models

    图  10  不同神经元组合的模型预测结果MSE对比

    Figure  10.  Comparison of MSE prediction results for models with different neuronal combinations

    图  11  3组工况下RC板损伤范围预测对照

    Figure  11.  Comparison of damage range predictions for RC slabs under three working conditions

    图  12  3组工况RC板挠度预测对照

    Figure  12.  Comparison of deflection prediction for RC slabs under three working conditions

    表  1  RHT本构模型材料参数

    Table  1.   RHT constitutive model of material parameters

    ρ0 /(kg/m3) Fc /MPa Ft /MPa G A B N
    2400 40.2 3.5 16 000 1.6 0.65 0.79
    下载: 导出CSV

    表  2  JWL状态方程参数

    Table  2.   Parameter of JWL equation of state

    ρ0 /(kg/m3) K1/MPa K2/MPa R1 R2 ω E0 /(J/kg)
    1610 3.71×105 3.21×103 4.15 0.95 0.3 7×106
    下载: 导出CSV

    表  3  Gruneisen状态方程参数

    Table  3.   Parameter of Gruneisen equation of state

    ρw0 /(kg/m3) c/ (m/s) S S1 S2 S3
    1 000 1 480 0 2.56 −1.986 0.2268
    下载: 导出CSV
  • [1] 马上, 王振清, 陈叶青, 等. 水中爆炸作用下混凝土重力坝损伤研究[J]. 混凝土, 2023(11): 63-71.
    [2] COLE R H. Underwater explosions[M]. Princeton: Princeton University Press, 1948.
    [3] WANG J, GUO J, YAO X L, et al. Dynamic buckling of stiffened plates subjected to explosion impact loads[J]. Shock Waves, 2017, 27: 37-52. doi: 10.1007/s00193-016-0638-z
    [4] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[J]. Proceedings of the Fourteenth International Symposium on Ballistics, 1993, 1: 591-600.
    [5] 周飞, 李贺东, 吴昊. 水中近场爆炸下钢筋混凝土板局部破坏模式数值模拟研究[J]. 浙江大学学报(英文版)(A辑:应用物理和工程), 2024, 25(8): 650-669.

    ZHOU F, LI H D, WU H, et al. Numerical simulation study on local failure mode of reinforced concrete slabs under near-field explosion in water[J]. Journal of Zhejiang University-SCIENCE A(Applied Physics & Engineering), 25(8), 650-669.
    [6] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 109(12): 051003.
    [7] 刘丽滨, 李海涛, 刁爱民, 等. 水下爆炸船体梁总体响应特性数值模拟[J]. 高压物理学报, 2021, 35(6): 178-185.

    LIU L B, LI H T, DIAO A M, et al. Numerical simulation of overall response characteristics of ship beams under underwater explosion[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 178-185.
    [8] 朱玉富, 赵春风, 周志航. 基于机器学习的钢筋混凝土板在爆炸作用下的最大位移预测模型[J]. 高压物理学报, 2023, 37(2): 92-106.

    ZHU Y F, ZHAO C F, ZHOU Z H. Maximum displacement prediction model of reinforced concrete slab under blast loading based on machine learning[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 92-106.
    [9] Li Q L, Wang Z T, Chen W S, et al. Advancing blast fragmentation simulation of RC slabs: A graph neural network approach[J]. Engineering Structures, 2024, 308: 118009. doi: 10.1016/j.engstruct.2024.118009
    [10] FARIS H. MIRJALILI S. ALJARAH I. Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme[J]. International Journal of Machine Learning and Cybernetics, 2019, 10: 2901-2920. doi: 10.1007/s13042-018-00913-2
    [11] 赵春风, 向思麒, 朱玉富. 基于机器学习的RC板爆炸两阶段损伤评估模型[J]. 建筑结构学报, 2025, 46(1): 212-222.
    [12] WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a oneway square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering, 2012, 49: 158-164. doi: 10.1016/j.ijimpeng.2012.03.010
    [13] 刘靖晗, 唐廷, 韦灼彬, 等. 水下爆炸作用下高桩码头损伤特性数值模拟研究[J]. 兵器装备工程学报, 2024, 45(10): 53-60.
    [14] 胡锦华. 水下接触爆炸下钢筋混凝土板毁伤模式探究[J]. 工程爆破, 2022, 28(3): 17-23.
    [15] BILLINGS S A, VOON W S F. Least squares parameter estimation algorithms for non-linear systems. International[J] Journal of Systems Science, 1984, 15(6): 601-615.
    [16] HAGAN M T, MENHAJ M B. Training feed forward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks, 1994, 5(6): 989-993. doi: 10.1109/72.329697
    [17] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [18] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]//2015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile: ICCV, 2015: 1026-1034.
    [19] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural networks, 2015, 61: 85-117. doi: 10.1016/j.neunet.2014.09.003
    [20] ZHANG W, NIU L, ZHANG D, et al. HW-ADAM: FPGA-based accelerator for adaptive moment estimation[J]. Electronics, 2023, 12(2): 263. doi: 10.3390/electronics12020263
    [21] WIANGKHAM A, ARIYARIT A, AENGCHUAN P. Prediction of the influence of loading rate and sugarcane leaves concentration on fracture toughness of sugarcane leaves and epoxy composite using artificial intelligence[J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103188. doi: 10.1016/j.tafmec.2021.103188
    [22] REN S F, ZHAO P F, WANG S P, et al. Damage prediction of stiffened plates subjected to underwater contact explosion using the machine learning-based method[J]. Ocean Engineering, 2022, 266: 112839. doi: 10.1016/j.oceaneng.2022.112839
    [23] 于玲玲, 张飞, 何文凯. 考虑地应力与先爆孔损伤的光面爆破数值模拟[J]. 地下空间与工程学报, 2024, 20(2): 636-644.
    [24] PENG X, HU Z, LI T. Neural network based combining prediction model and its application in ship motion prediction[C]//2010 8th World Congress on Intelligent Control and Automation. Jinan, China: IEEE, 2010: 5624-5627.
    [25] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
    [26] SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  19
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-21
  • 修回日期:  2025-06-11
  • 录用日期:  2025-06-13
  • 网络出版日期:  2025-10-14

目录

    /

    返回文章
    返回
    服务号
    订阅号