• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海上目标磁场多模特征提取方法研究

董昊 张宇 覃维 陈帅

董昊, 张宇, 覃维, 等. 海上目标磁场多模特征提取方法研究[J]. 水下无人系统学报, 2025, 33(5): 1-10 doi: 10.11993/j.issn.2096-3920.2025-0047
引用本文: 董昊, 张宇, 覃维, 等. 海上目标磁场多模特征提取方法研究[J]. 水下无人系统学报, 2025, 33(5): 1-10 doi: 10.11993/j.issn.2096-3920.2025-0047
DONG Hao, ZHANG Yu, QIN Wei, CHEN Shuai. Extraction Method for Multiple Feature Models of The Magnetic Field from Marine Targets[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0047
Citation: DONG Hao, ZHANG Yu, QIN Wei, CHEN Shuai. Extraction Method for Multiple Feature Models of The Magnetic Field from Marine Targets[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0047

海上目标磁场多模特征提取方法研究

doi: 10.11993/j.issn.2096-3920.2025-0047
基金项目: 国家重点研发计划项目资助(2022YFC3104002).
详细信息
    通讯作者:

    陈 帅(1997-), 男, 硕士, 工程师, 主要从事水下无人装备研究.

  • 中图分类号: TJ610.2, U674.941

Extraction Method for Multiple Feature Models of The Magnetic Field from Marine Targets

  • 摘要: 海上目标会引起周围磁场畸变, 形成目标的磁场特征, 该特征广泛应用于目标探测、舰艇隐身战等方面。针对目标磁场多模特征提取问题, 依据磁信号产生机理, 建立相遇模式下磁异常信号模型, 分析同一目标不同源磁场的特征差异。提出一种基于磁特征的变分模态分解方法, 优化目标磁信号分解中的参数, 根据频率特征差异分离出静磁场、轴频磁场信号。采集海上实际干扰信号, 结合仿真目标信号对分解方法进行验证, 与传统算法相比, 所提方法能得到更高信噪比、更低误差的信号。最后, 对舰船磁场进行实际测量, 利用实测数据验证了所提分解方法对海上目标特征提取的有效性。

     

  • 图  1  海上目标静态磁场特征

    Figure  1.  Static magnetic field characteristics of marine targets

    图  2  不同CPA磁场信号功率谱对比

    Figure  2.  Comparison of power spectra of different CPA magnetic field signals

    图  3  舰船轴频磁场通过特性曲线

    Figure  3.  Characteristic curves of the ship pass through shaft-frequency magnetic field

    图  4  仿真海上目标磁场测量信号

    Figure  4.  Simulated magnetic field signal of marine target

    图  5  多模磁场信号分解效果

    Figure  5.  Decomposition of multimode magnetic field signals

    图  6  磁场特征分量信噪比、均方根误差对比

    Figure  6.  Comparison of SNR and RMSE between magnetic field characteristic components

    图  7  海上实测目标信号

    Figure  7.  Measured target signal in sea trial

    图  8  提取目标多模磁场特征

    Figure  8.  Multi-mode magnetic field characteristics of the target

    图  9  目标轴频信号频谱分析

    Figure  9.  Spectrum analysis of target axis frequency signal

  • [1] 林春生, 龚沈光. 舰船物理场[M]. 第2版. 北京: 兵器工业出版社, 2007.
    [2] JIN H, GUO J, WANG H, et al. Magnetic anomaly detection and localization using orthogonal basis of magnetic tensor contraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5944-54. doi: 10.1109/TGRS.2020.2973322
    [3] SHEN Y, WANG J Z, GAO J Q, et al. Noise suppression for vector magnetic anomaly detection by noise spatial characteristics investigation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-4.
    [4] KIM Y S, LEE S K, KIM J M. Influence of anode location and quantity for the reduction of underwater electric fields under cathodic protection[J]. Ocean Eng, 2018, 163: 476-482. doi: 10.1016/j.oceaneng.2018.06.024
    [5] LU B J, ZHANG X B. Research on the design of a novel composite solenoid model ship simulation magnetic source based on DTW[J]. AIP Advances, 2024, 14, 015201: 1-12.
    [6] 张伽伟, 喻鹏, 姜润翔, 等. 基于舰船电场的目标跟踪方法研究[J]. 兵工学报, 2020, 41(3): 559-566. doi: 10.3969/j.issn.1000-1093.2020.03.017

    ZHANG J W, YU P, JIANG R X, et al. Electric field tracking based on static potential difference[J]. Acta Armamentarii, 2020, 41(3): 559-566. doi: 10.3969/j.issn.1000-1093.2020.03.017
    [7] CHENG R, JIANG R X, GONG S G. Extraction of line spectrum of the ship shaft-rate electric field based on EMD and fourth-order cumulant[J]. Ship Science and Technology, 2016, 38(1): 94-98.
    [8] 杜德锋, 陈帅, 王磊, 等. 一种近海水域磁异常信号检测方法[J]. 水下无人系统学报, 2023, 31(2): 269-277. doi: 10.11993/j.issn.2096-3920.202203008

    DU D F, CHEN S, WANG L, et al. A detection method of magnetic anomaly signal in offshore waters[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 269-277. doi: 10.11993/j.issn.2096-3920.202203008
    [9] JIN H H, ZHUANG Z H, WANG H B. None-asphericity-error method for magnetic dipole target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1294-98. doi: 10.1109/LGRS.2018.2827568
    [10] QIN T, ZHOU L, CHEN S, et al. The novel method of magnetic anomaly recognition based on the fourth order aperiodic stochastic resonance[J]. IEEE Sensors Journal, 2022, 22(17): 17043-53. doi: 10.1109/JSEN.2022.3192668
    [11] 包中华, 于仕财, 龚沈光. 基于小波包分解和滑动功率谱的舰船轴频电场信号检测[J]. 海军航空工程学院学报, 2012, 27(3): 257-262.

    BAO Z H, YU S C, GONG S G. Detection of ship shaft-rate electric field signals based on wavelet packet decomposition and sliding PSD[J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(3): 257-262.
    [12] 喻鹏, 程锦房, 张伽伟, 等. 基于Rao检测器的舰船轴频电场滑动门限检测方法[J]. 兵工学报, 2021, 42(4): 827-834. doi: 10.3969/j.issn.1000-1093.2021.04.016

    YU P, CHENG J F, ZHANG J W, et al. Ship shaft-rate electric field sliding threshold detection method based on Rao detector[J]. Acta Armamentarii, 2021, 42(4): 827-834. doi: 10.3969/j.issn.1000-1093.2021.04.016
    [13] 李松, 石敏, 栾经德, 等. 舰船轴频电场信号特征提取与检测方法[J]. 兵工学报, 2015, 36(增刊2): 220-224.

    LI S, SHI M, LUAN J D, et al. The feature extraction and detection for shaft-rate electric field of a ship[J]. Acta Armamentarii, 2015, 36(S2): 220-224.
    [14] 程锐, 陈聪, 张伽伟. 基于EEMD和改进功率谱熵的船舶轴频电场检测[J]. 华中科技大学学报(自然科学版), 2017, 45(5): 11-16.

    CHENG R, CHEN C, ZHANG J W. Detection of ship shaft-rate electric field based on EEMD and modified power spectral entropy[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2017, 45(5): 11-16.
    [15] WANG J Z, JIANG Z K, GAO J Q, et al. Frequency characteristics analysis for magnetic anomaly detection[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
    [16] 刘芙妍, 颜冰. 磁偶极子阵列模型的适用性研究与优化分析[J]. 物理学报, 2022, 71(12): 1-13.

    LIU F Y, YAN B. Applicability and optimization analysis of magnetic dipole array model[J]. Acta Physica Sinica, 2022, 71(12): 1-13.
    [17] WU Z Q, ZHU X H, LI B. Modeling and measurements of alternating magnetic signatures of ships[J]. Sensor & Transducers, 2015, 186(3): 161-167.
    [18] ZOLOTAREVSKII Y, BULYGIN F, PONOMAREV A. Methods of measuring the low-frequency electric and magnetic fields of ships[J]. Measurement Techniques, 2005, 48(11): 1140-44. doi: 10.1007/s11018-006-0035-6
    [19] 熊露, 姜润翔, 龚沈光. 浅海中船舶轴频电场建模方法[J]. 国防科技大学学报, 2014, 36(1): 98-103. doi: 10.11887/j.cn.201401018

    XIONG L, JIANG R X, GONG S G. Ship modeling method of shaft-ELFE in shallow sea[J]. Journal of National University of Defense Technology, 2014, 36(1): 98-103. doi: 10.11887/j.cn.201401018
    [20] 陈齐乐, 钱鹏飞, 孔志杰, 等. 基于变分信号分解的脉冲多普勒雷达抗扫频式干扰方法[J]. 兵工学报, 2024, 45(6): 2076-84.

    CHEN Q L, QIAN P F, KONG Z J. Anti-sweep-jamming method for PD radar based on variational signal decomposition[J]. Acta Armamentarii, 2024, 45(6): 2076-84.
    [21] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [22] ZHANG X L, CAO L Y, CHEN Y, et al. Microseismic signal denoisingy ombining variational mode decomposition with permutation entropy[J]. Applied Geophysics, 2022, 19(1): 65-80. doi: 10.1007/s11770-022-0926-6
    [23] 李华, 王天杨, 张飞斌, 等. KurVMDPgram: 一种用于旋转机械故障诊断的信号分解算法[J]. 机械工程学报, 2025, 61(4): 11-23.

    LI H, WANG T Y, ZHANG F B, et al. KurVMDPgram: A signal decomposition algorithm for fault diagnosis of rotating machinery[J]. Journal of Mechanical Engineering, 2025, 61(4): 11-23.
    [24] 弭晴, 马永涛, 黄祉同. 基于多序列 WOA-VMD 算法的超宽带雷达心率检测[J]. 传感技术学报, 2024, 37(7): 1144-53. doi: 10.3969/j.issn.1004-1699.2024.07.006

    MI Q, MA Y T, HUANG Z T. Heart rate detection based on multi-sequence WOA-VMD algorithm using UWB radar[J]. Chinese Journal of Sensors and Actuators, 2024, 37(7): 1144-53. doi: 10.3969/j.issn.1004-1699.2024.07.006
  • 加载中
图(9)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-20
  • 修回日期:  2025-06-10
  • 录用日期:  2025-06-16
  • 网络出版日期:  2025-09-26

目录

    /

    返回文章
    返回
    服务号
    订阅号