Ore-Collecting Characteristic Analysis of Deep-Sea Polymetallic Nodule Collection Device Based on Variable Cross-Section Flow Channel
-
摘要: 深海矿产资源开发的快速发展对装备技术提出更高要求, 其中多金属结核水力采集装置因复杂流-固耦合作用导致的流道结构设计缺陷, 造成结核捕获效率显著降低, 严重制约深海采矿商业化进程。文中针对被广泛应用的双排射流与附壁射流装置, 基于剪切应力传输 k-ω湍流模型和离散元方法(DEM)的数值分析方法, 探究2种水力集矿方式的流场分布、颗粒运动规律以及采集头与变截面式流道的搭配性。结果表明: 2种采集方式的输送流率均随射流流量的增大而增大, 射流流量在一定范围内对采集率影响较小, 流道构型对采集率的影响较大; 双排射流由于受漩涡等非均匀流场的影响, 流道入口处阻碍了结核的有效提升, 双排射流的采集率仅有80%; 附壁射流由于其均匀分布的流场结构, 表现出较优的结核开采能力, 采集率约为95%; 相同结构尺寸及水力参数条件下, 附壁射流的集矿能力与流道的搭配性更优, 双排射流在商业化应用设计中应重点解决流场漩涡等负面影响。文中研究可为深海多金属结核高效采集装置的结构设计提供参考。Abstract: With the rapid advancement of deep-sea mineral resource exploitation, there is an escalating demand for enhanced technological capabilities in equipment. The design flaws of the flow channel structure caused by the complex fluid-solid coupling effect of the polymetallic nodule hydraulic collection device have significantly reduced the nodule capture efficiency, seriously restricting the commercialization process of deep-sea mining. In this paper, for the widely used dual-row jet and wall-attached jet devices, based on the shear stress transfer k-ω turbulence model and the numerical analysis method of the discrete element method(DEM), the flow field distribution, particle movement law, and the compatibility of the collection head with the variable cross-section flow channel of the two hydraulic ore collection methods were explored. The findings reveal that both collection methods exhibit increasing transport rates with elevated jet velocities, and the collection efficiency demonstrates limited sensitivity to jet velocity variations within certain ranges. Flow channel configuration emerges as the dominant factor affecting collection efficiency. The dual-row jet configuration achieves only 80% collection efficiency due to vortex-induced flow field heterogeneity, particularly at the flow channel inlet region where efficient nodule collection is impeded. In contrast, the wall-attached jet configuration demonstrates superior nodule collection efficiency of 95%, attributable to its uniform flow field distribution. Comparative analysis under identical structural dimensions and hydraulic parameters confirms the wall-attached jet’s advantages in both ore collection capacity and flow channel compatibility. This study proposes that commercial applications of dual-row jets should prioritize vortex mitigation strategies in flow channel design. The presented findings provide references for optimizing structural configurations of efficient deep-sea polymetallic nodule collection devices.
-
Key words:
- deep-sea mining /
- hydraulic collection /
- flow field analysis /
- ore-collecting capacity
-
-
[1] 康娅娟, 刘少军. 深海多金属结核开采技术发展历程及展望[J]. 中国有色金属学报, 2021, 31(10): 2848-59.KANG Y J, LIU S J. Development history and prospect of deep sea polymetallic nodules mining technology[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(10): 2848-59. [2] DU D W, REN X W, YAN S J, et al. An integrated method for the quantitative evaluation of mineral resources of cobalt-rich crusts on seamounts[J]. Ore Geology Reviews. 2017, 84: 174-184. [3] 王明和. 深海固体矿产资源开发[M]. 长沙: 中南大学出版社, 2015. [4] 赵松年, 刘峰. 德国深海采矿技术的研究[J]. 金属矿山, 1995(6): 14-17. [5] SAID A, DHRUV M, RUDY H. Mining of deep-seabed nodules using a Cnandă-effect-based collector[J]. Results in Engineering, 2023, 17: 1-14. [6] 赵国成, 肖龙飞, 杨建民, 等. 深海水力集矿球 形颗粒受力特性研究[J]. 上海交通大学学报, 2019, 53(8): 907-912. [7] JIA H, YANG J, SU X H, et al. Theoretical prediction on hydraulic lift of a Coanda effect-based mining collector for manganese nodule[J]. Energies, 2022, 15(17): 6345. doi: 10.3390/en15176345 [8] 刘杰, 许栋, 及春宁, 等. 深海多金属结核水力集矿头流场结构数值模拟研究[J]. 海洋工程, 2023, 41(3): 123-136. [9] YUE Z Y, ZHAO G C, XIAO L F, et al. Comparative study on collection performance of three nodule collection methods in seawater and sediment-seawater mixture[J]. Applied Ocean Research, 2021, 110: 102606. doi: 10.1016/j.apor.2021.102606 [10] 王国荣, 黄泽奇, 周守为, 等. 深海矿产资源开发装备现状及发展方向[J]. 中国工程科学, 2023, 25(3): 1-12.WANG G R, HUANG Z Q, ZHOU S W, et al. Current status and development direction of deep-sea mineral resources exploitation equipment[J]. Engineering Science, 2023, 25(3): 1-12. [11] 杨浩. 深海采矿射流集矿装置的流场特性研究[D]. 杭州: 浙江理工大学, 2023. [12] 董志勇. 冲击射流[M]. 北京: 海洋出版社, 1997. [13] LIU X X, CHEN X G, WEI J K, et al. Study on sediment erosion generated by a deep-sea polymetallic-nodule collector based on double-row jet[J]. Ocean Engineering, 2023, 285(P1): 115220. [14] 李蘅. 深海采矿水力提升系统粗颗粒运动规律模拟研究[D]. 北京: 清华大学, 2003. [15] OEBIUS H U, BECKER H J, ROLINSKI S, et al. Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(17): 3453-3467. [16] DI R A, DI M. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59(3): 525-541. doi: 10.1016/j.ces.2003.09.037 [17] VOLKMANN S E, LEHNEN F. Production key figures for planning the mining of manganese nodules[J]. Marine Georesources & Geotechnology, 2018, 36(3/4): 360-375. -

下载: