• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

感应电机强定子电阻鲁棒性降阶磁链观测器无速度传感器控制

段罗堡 王静 潘阳

段罗堡, 王静, 潘阳. 感应电机强定子电阻鲁棒性降阶磁链观测器无速度传感器控制[J]. 水下无人系统学报, 2025, 33(4): 722-732 doi: 10.11993/j.issn.2096-3920.2025-0038
引用本文: 段罗堡, 王静, 潘阳. 感应电机强定子电阻鲁棒性降阶磁链观测器无速度传感器控制[J]. 水下无人系统学报, 2025, 33(4): 722-732 doi: 10.11993/j.issn.2096-3920.2025-0038
DUAN Luobao, WANG Jing, PAN Yang. Sensorless Speed Control of Induction Motors Using Reduced-Order Flux Linkage Observers with Strong Robustness to Stator Resistance[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 722-732. doi: 10.11993/j.issn.2096-3920.2025-0038
Citation: DUAN Luobao, WANG Jing, PAN Yang. Sensorless Speed Control of Induction Motors Using Reduced-Order Flux Linkage Observers with Strong Robustness to Stator Resistance[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 722-732. doi: 10.11993/j.issn.2096-3920.2025-0038

感应电机强定子电阻鲁棒性降阶磁链观测器无速度传感器控制

doi: 10.11993/j.issn.2096-3920.2025-0038
详细信息
    作者简介:

    段罗堡(1997-), 男, 助理工程师, 主要研究方向为应用电子技术

  • 中图分类号: TJ630; U663

Sensorless Speed Control of Induction Motors Using Reduced-Order Flux Linkage Observers with Strong Robustness to Stator Resistance

  • 摘要: 感应电机无速度传感器控制技术能够减低系统成本和体积、优化硬件结构、可靠性高且易于维护, 已成为现代工业自动化、机器人控制和电动汽车驱动等领域的重要技术手段。然而, 该技术在低速发电区域内仍存在关键问题:系统在低速运行时可能会出现不稳定现象, 且低速控制性能易受定子电阻变化的影响。针对这些问题, 文中对感应电机降阶磁链观测器的增益设计进行优化, 在不添加额外的定子电阻自适应或在线辨识环节的前提下, 实现了降阶磁链观测器在低速发电区域的稳定运行和对定子电阻变化的强鲁棒性。为了充分验证所提方法的有效性和通用性, 在不同功率等级电机和不同定子电阻误差条件下开展了全低速范围带载实验。实验结果表明, 优化后的降阶磁链观测器在整个低速区域内表现出优异的稳定性和定子电阻鲁棒性, 系统控制性能显著提升。

     

  • 图  1  感应电机$ {\mathbf{Inverse}}{\text{-}}{\boldsymbol{\Gamma}} $模型

    Figure  1.  $ {\bf{Inverse}} {\text{-}} {\boldsymbol{\Gamma}} $ model of induction motor

    图  2  感应电机空间矢量图

    Figure  2.  Space vector diagram of induction motor

    图  3  定子电阻变化后定转子磁链空间矢量图

    Figure  3.  Stator and rotor flux space vector diagram after stator resistance variation

    图  4  所提参数选择下不同工况时bc取值

    Figure  4.  Values of b and c under different operating conditions with proposed parameter selection

    图  5  基于降阶磁链观测器的感应电机无速度传感器矢量控制框图

    Figure  5.  Block diagram of speed sensorless vector control for induction motor based on reduced-order flux observer

    图  6  感应电机对拖实验平台

    Figure  6.  Test platform for induction motor dragging system

    图  7  4 kW电机正反转和零速悬停波形

    Figure  7.  Waveforms of 4 kW motor during forward/reverse rotation and zero-speed hovering

    图  8  55 kW电机正反转和零速悬停波形

    Figure  8.  Waveforms of 55 kW motor during forward/reverse rotation and zero-speed hovering

    图  9  定子电阻较真实值偏小50%时4 kW电机正反转和零速悬停波形

    Figure  9.  Waveforms of 4 kW motor during forward/reverse rotation and zero-speed hovering (stator resistance 50% smaller than actual value)

    图  10  定子电阻较真实值偏小50%时55 kW电机正反转和零速悬停波形

    Figure  10.  Waveforms of 55 kW motor during forward/reverse rotation and zero-speed hovering (stator resistance 50% smaller than actual value)

    图  11  定子电阻较真实值偏大50%时4 kW电机正反转和零速悬停波形

    Figure  11.  Waveforms of 4 kW motor during forward/reverse rotation and zero-speed hovering (stator resistance 50% larger than actual value)

    图  12  定子电阻较真实值偏大50%时55 kW电机正反转和零速悬停波形

    Figure  12.  Waveforms of 55 kW motor during forward/reverse rotation and zero-speed hovering (stator resistance 50% larger than actual value)

    表  1  感应电机参数

    Table  1.   Parameters of induction motors

    参数 数值
    4 kW 55 kW
    额定功率/kW 4 55
    额定电压/V 380 380
    额定电流/A 8.8 103
    额定频率/Hz 50 50
    额定转速/(r/min) 1 440 1 440
    极对数 2 2
    定子电阻/Ω 1.12 0.046
    转子电阻/Ω 0.833 0.032
    互感/mH 149.5 21.4
    定子电感/mH 153.9 22
    转子电感/mH 153.9 22
    下载: 导出CSV
  • [1] ODHANO S A, PESCETTO P, AWAN H A A, et al. Parameter identification and self-commissioning in ac motor drives: A technology status review[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3603-3614.
    [2] ZERDALI E, BARUT M. The comparisons of optimized extended kalman filters for speed-sensorless control of induction motors[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4340-4351. doi: 10.1109/TIE.2017.2674579
    [3] MONTERO E R, VOGELSBERGER M, WOLBANK T. Sensorless saliency-based control of dual induction machines under dynamic load imbalances using three current sensors[J]. IEEE Transactions on Industrial Electronics, 2023, 70(12): 12093-12101. doi: 10.1109/TIE.2023.3241394
    [4] HOLTZ J. Sensorless control of induction machines—with or without signal injection[J]. IEEE Transactions on Industrial Electronics, 2006, 53(1): 7-30. doi: 10.1109/TIE.2005.862324
    [5] GAO Q, ASHER G, SUMNER M. Sensorless position and speed control of induction motors using high-frequency injection and without offline precommissioning[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2474-2481. doi: 10.1109/TIE.2007.900364
    [6] METWALY M K, ELKALASHY N I, ZAKY M S, et al. Slotting saliency extraction for sensorless torque control of standard induction machines[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 68-77. doi: 10.1109/TEC.2017.2726998
    [7] ORLOWSKA-KOWALSKA T, KORZONEK M, TARCHALA G. Stability improvement methods of the adaptive full-order observer for sensorless induction motor drive-comparative study[J]. IEEE Transactions on Industrial Informatics, 2019, 15(11): 6114-6126. doi: 10.1109/TII.2019.2930465
    [8] AMBROZIC V, NEDELJKOVIĆ D, NASTRAN J. Sensorless control of induction machine with parameter adaptation[C]//Proceedings of the IEEE International Symposium on Industrial Electronics. Bled, Slovenia: IEEE, 1999.
    [9] SANGWONGWANICH S, NITTAYATAREEKUL U, MAGYAR P. Direct speed estimation based on back-EMF of induction motors-Its equivalent MRAS representation and stability analysis[C]//EPE2003. Toulouse, France: IEEE, 2003.
    [10] HINKKANEN M, HARNEFORS L, LUOMI J. Reduced-order flux observers with stator-resistance adaptation for speed-sensorless induction motor drives[J]. IEEE Transactions on Power Electronics, 2010, 25(5): 1173-1183.
    [11] TARCHALA G, ORLOWSKA-KOWALSKA T. Equivalent-signal-based sliding mode speed mras-type estimator for induction motor drive stable in the regenerating mode[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 6936-6947. doi: 10.1109/TIE.2018.2795518
    [12] MOAVENI B, MASOUMI Z, RAHMANI P. Introducing improved iterated extended Kalman filter(IIEKF) to estimate the rotor rotational speed, rotor and stator resistances of induction motors[J]. IEEE Access, 2023, 11: 17584-17593. doi: 10.1109/ACCESS.2023.3244830
    [13] TIR Z, ORLOWSKA-KOWALSKA T, AHMED H, et al. Adaptive high gain observer based MRAS for sensorless induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2024, 71(1): 271-281. doi: 10.1109/TIE.2023.3243271
    [14] MAKSOUD H A, SHAABAN S M, ZAKY M S, et al. Performance and stability improvement of AFO for sensorless IM drives in low speeds regenerating mode[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7812-7825. doi: 10.1109/TPEL.2018.2879759
    [15] WANG T, WANG B, YU Y, et al. High-order sliding-mode observer with adaptive gain for sensorless induction motor drives in the wide-speed range[J]. IEEE Transactions on Industrial Electronics, 2023, 70(11): 11055-11066. doi: 10.1109/TIE.2022.3227272
    [16] 李筱筠, 杨淑英, 曹朋朋, 等. 低速运行时异步驱动转速自适应观测器稳定性分析与设计[J]. 电工技术学报, 2018, 33(23): 5391-5401.

    LI X Y, YANG S Y, CAO P P, et al. Stability analysis and design of asynchronous drive speed adaptive observer during low-speed operation[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5391-5401.
    [17] LI R, YANG K, LUO C, et al. Phase compensation factor-based low frequency crossing for sensorless induction motor drives with changing loads[J]. IEEE Transactions on Power Electronics, 2023, 38(9): 10680-10691. doi: 10.1109/TPEL.2023.3280486
    [18] SUN W, YU Y, WANG G, et al. Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2609-2626. doi: 10.1109/TPEL.2015.2440373
    [19] CHEN J, HUANG J, SUN Y. Resistances and speed estimation in sensorless induction motor drives using a model with known regressors[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2659-2667. doi: 10.1109/TIE.2018.2849964
    [20] SAEJIA M, SANGWONGWANICH S. Averaging analysis approach for stability analysis of speed-sensorless induction motor drives with stator resistance estimation[J]. IEEE Transactions on Industrial Electronics, 2006, 53(1): 162-177. doi: 10.1109/TIE.2005.862301
    [21] SUN W, GAO J, YU Y, et al. Robustness improvement of speed estimation in speed-sensorless induction motor drives[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2525-2536. doi: 10.1109/TIA.2015.2512531
    [22] LUO C, LI R, YANG K, et al. Graphical multiple-error feedback matrix design for stability and robustness enhancement of speed-sensorless induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 3537-3548. doi: 10.1109/TIE.2022.3176269
    [23] SUN W, WANG Z, XU D, et al. Robust stability improvement for speed sensorless induction motor drive at low speed range by virtual voltage injection[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2642-2654. doi: 10.1109/TIE.2019.2910039
    [24] NURETTIN A, İNANÇ N. Sensorless vector control for induction motor drive at very low and zero speeds based on an adaptive-gain super-twisting sliding mode observer[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(4): 4332-4339. doi: 10.1109/JESTPE.2023.3265352
    [25] LIU H. Sensorless control with adaptive speed observer using power winding information for dual-stator winding induction starter/generator[J]. IEEE Transactions on Industrial Electronics, 2024, 71(2): 1388-1398. doi: 10.1109/TIE.2023.3253965
    [26] CHEN J, YANG G, YUAN X, et al. Experimental validation of a minimum-order sensorless induction motor control method[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2024, 12(4): 3715-3728. doi: 10.1109/JESTPE.2024.3404227
    [27] SLEMON G R. Modelling of induction machines for electric drives[J]. IEEE Transactions on Industry Applications, 1989, 25(6): 1126-1131. doi: 10.1109/28.44251
    [28] BOLDEA I, PAICU M C, ANDREESCU G D. Active flux concept for motion-sensorless unified AC drives[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2612-2618. doi: 10.1109/TPEL.2008.2002394
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  13
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-02
  • 修回日期:  2025-05-26
  • 录用日期:  2025-05-28
  • 网络出版日期:  2025-07-24

目录

    /

    返回文章
    返回
    服务号
    订阅号