Trajectory Tracking Control Method for AUV Planar MotionBased on Three-Level Hierarchical Speed Regulation
-
摘要: 针对自主水下航行器(AUV)水下运动时经常出现的航迹超调问题, 文中提出了一种融合自适应视线导引算法与三级递阶航速控制架构的协同控制策略,将航迹末端距离参数引入控制决策, 通过三级递阶控制策略实现航速的动态分配。仿真结果验证了基于三级递阶控制策略的动态航速调节机制的有效性, 通过实时计算AUV与期望航迹段终点的距离偏差, 控制器能够在大曲率转向需求触发前, 主动实施分级减速策略, 从而有效抑制因动量累积引发的轨迹偏移现象。对比航向航速双闭环算法, 在相同的轨迹下, 文中方法超调量减少了34.15%, 使得AUV在转弯时仍能准确沿预定轨迹行驶, 显著减少轨迹偏差。Abstract: Autonomous undersea vehicle(AUV) often encounter the problem of track overshoot when moving underwater. To address this issue, this paper proposed a cooperative control strategy that integrated the adaptive line-of-sight guidance algorithm and the three-level hierarchical speed control architecture. In this study, the distance parameter at the end of the track was introduced into the control decision, and the dynamic allocation of the speed was achieved through a three-level hierarchical control strategy. The simulation results verify the effectiveness of the dynamic speed regulation mechanism based on the three-level hierarchical control strategy. By calculating the distance deviation between the AUV and the end of the expected track section in real time, the controller can actively implement the hierarchical deceleration strategy before the large curvature turning requirement is triggered, thereby effectively suppressing the trajectory offset phenomenon caused by momentum accumulation. Compared with the heading-speed double closed-loop algorithm, under the same trajectory, the overshoot of the method in this paper is reduced by 34.15%, enabling the AUV to still accurately travel along the predetermined trajectory when turning and significantly reducing the trajectory deviation.
-
表 1 AUV运动学参数及符号定义
Table 1. Kinematics parameters and symbol definition of AUV
运动自由度 力与
力矩线速度及
角速度位置与姿
态变量沿x轴方向平移(进退) X u x 沿y轴方向平移(侧移) Y v y 绕z轴方向转动(回转) N r $ \psi $ 表 2 航向航速双闭环控制的舵角PD与航速PID控制器系数
Table 2. Rudder angle PD controller coefficient and speed PID controller coefficient under the heading-speed double closed-loop control
Kp Ki Kd 舵角PD控制器 0.1579 — 1.2481 航速PID控制器 11.7015 0.6988 22.5749 表 3 航迹跟踪控制性能指标
Table 3. Performance indicators of track tracking control
控制方法 最大
误差/m稳态
误差/m航速调节
时间/s三级递阶航速调节控制 4.656 0.08 147 航向航速双闭环航速控制 7.071 0.09 119 -
[1] CHEN W, LIU X L, FENG Z A, et al. Improved line-of-sight nonlinear trajectory tracking control of autonomous underwater vehicle exposed to high variable speed ocean currents[J]. Ocean Engineering, 2023(277): 114149. [2] DU P Z, YANG W C, CHEN Y, et al. Improved indirect adaptive line-of-sight guidance law for path following of under-actuated AUV subject to big ocean currents[J]. Ocean Engineering, 2023(281): 114729. [3] 陆智强, 庄子昊, 王建辉, 等. 基于LOS+PID的无人船行驶路径跟踪控制[J]. 微型电脑应用, 2024, 40(10): 1-5. doi: 10.3969/j.issn.1007-757X.2024.10.001LU Z Q, ZHUANG Z H, WANG J H, et al. Path tracking control of unmanned ship based on LOS+PID[J]. Microcomputer Application, 2024, 40(10): 1-5. doi: 10.3969/j.issn.1007-757X.2024.10.001 [4] DU B, YANG K D, ZHANG W D, et al. Terminal line-of-sight angle-constrained target tracking guidance for unmanned surface vehicles[J]. IEEE Transactions on Vehicular Technology, 2024(73): 12515-12529. [5] 陈世利, 卫民, 李一博, 等. 基于双闭环的矢量推进器的AUV转向控制方法[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(6): 530-534.CHEN S L, WEI M, LI Y B, et al. AUV steering control method based on double closed loop vector thruster[J]. Journal of Tianjin University (Natural Science and Engineering Technology), 2014, 47(6): 530-534. [6] BINGUL Z, GUL K. Intelligent-PID with PD feedforward trajectory tracking control of an autonomous underwater vehicle[J]. Machines, 2023, 11(2): 300. [7] SAHOO A, DWIVEDY S K, ROBI P S. Adaptive fuzzy PID controller for a compact autonomous underwater vehicle[C]//Global Oceans 2020: Singapore–U.S. Gulf Coast, Biloxi, MS, USA: IEEE, 2020: 1-6.SAHOO A, DWIVEDY S K, ROBI P S. Adaptive fuzzy PID controller for a compact autonomous underwater vehicle[C]//Global Oceans 2020: Singapore–U.S. Gulf Coast, Biloxi, MS, USA: IEEE, 2020: 1-6. [8] 史峻侨, 刘程, 郭玮丽, 等. 基于神经动态优化与模型预测控制的欠驱动船舶精确路径跟踪[J]. 中国舰船研究, 2025, 20(1): 1-10.SHI J Q, LIU C, GUO W L, et al. Accurate path tracking of underactuated ships based on neural dynamic optimization and model predictive control[J]. Chinese Ship Research, 2025, 20(1): 1-10. [9] PRESTERO T. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[D]. California:University of California at Davis, 2001. [10] 王浩亮, 任恩帅, 卢丽宇, 等. 面向海底管道巡检的AUV三维自适应路径跟踪[J]. 船舶工程, 2024, 46(4): 166-174.WANG H L, REN E S, LU L Y, et al. AUV 3D adaptive path tracking for submarine pipeline inspection[J]. Ship Engineering, 2019, 46(4): 166-174. [11] 付少波, 关夏威, 张昊. 基于自抗扰理论的欠驱动AUV无模型自适应路径跟踪控制[J]. 水下无人系统学报, 2024, 32(2): 328-336, 375.FU S B, GUAN X W, ZHANG H. Model-free adaptive path tracking control of underactuated AUV based on active disturbance rejection theory[J]. Journal of Unmanned Underwater Systems, 2019, 32(2): 328-336, 375. [12] 毛竞航, 吕海宁, 杨建民, 等. 基于模糊PID的深海采矿机器人路径跟踪控制[J]. 海洋工程, 2021, 39(5): 151-161.MAO J H, LÜ H N, YANG J M, et al. Path tracking control of deep-sea mining robot based on fuzzy PID[J]. Ocean Engineering, 2019, 39(5): 151-161. -

下载: