• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自然空化尾空泡内超声速射流流场特性数值研究仿真

曹越 俞建阳 汪思航 吕凌云 陈浮

曹越, 俞建阳, 汪思航, 等. 自然空化尾空泡内超声速射流流场特性数值研究仿真[J]. 水下无人系统学报, 2024, 32(3): 516-524 doi: 10.11993/j.issn.2096-3920.2024-0059
引用本文: 曹越, 俞建阳, 汪思航, 等. 自然空化尾空泡内超声速射流流场特性数值研究仿真[J]. 水下无人系统学报, 2024, 32(3): 516-524 doi: 10.11993/j.issn.2096-3920.2024-0059
CAO Yue, YU Jianyang, WANG Sihang, LÜ Lingyun, CHEN Fu. Numerical Simulation of Flow Field Characteristics of Supersonic Jet in Natural Cavitating Tail Cavity[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 516-524. doi: 10.11993/j.issn.2096-3920.2024-0059
Citation: CAO Yue, YU Jianyang, WANG Sihang, LÜ Lingyun, CHEN Fu. Numerical Simulation of Flow Field Characteristics of Supersonic Jet in Natural Cavitating Tail Cavity[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 516-524. doi: 10.11993/j.issn.2096-3920.2024-0059

自然空化尾空泡内超声速射流流场特性数值研究仿真

doi: 10.11993/j.issn.2096-3920.2024-0059
基金项目: 国家自然科学基金项目(52006045).
详细信息
    作者简介:

    曹越:曹 越(2000-), 男, 在读硕士, 主要研究方向为跨介质多相耦合流动

  • 中图分类号: TJ630; U674

Numerical Simulation of Flow Field Characteristics of Supersonic Jet in Natural Cavitating Tail Cavity

  • 摘要: 为揭示自然空化尾空泡内超声速流场的演化规律与空泡内部的流场结构, 文中基于限体积法流体体积多相流模型, 对自然空化尾空泡内超声速射流流场展开仿真研究, 对比了不同空化数和来流攻角下的空泡内部流场参数分布, 得出如下结论: 自然空化尾空泡在超声速射流入射后, 空泡形态较稳定, 其演化主要集中在空泡尾部闭合处; 空泡内超声速射流流场发展主要受回射流影响, 无来流攻角时受回射流冲击, 射流轴向发展受抑, 轴向射流出现“回缩”现象, 有来流攻角时, 回射流位置发生偏移, 其剪切卷吸作用占主导, 射流轴向发展迅速; 航行器姿态的稳定性主要受来流冲击和表面高压区分布的影响, 空化数较小时, 增大来流攻角可大幅度增加航行器俯仰力矩。

     

  • 图  1  喷管结构参数

    Figure  1.  Parameters of the nozzle construction

    图  2  数值计算模型

    Figure  2.  Numerical calculation model

    图  3  网格示意图

    Figure  3.  Schematic diagram of meshing

    图  4  喷管几何尺寸

    Figure  4.  Geometric dimensions of the nozzle

    图  5  壁面压力实验与数值仿真结果对比曲线

    Figure  5.  Results of wall pressure between experiment and numerical simulation

    图  6  数值仿真与实验结果对比

    Figure  6.  Comparison between numerical simulation results and experimental results

    图  7  来流攻角0°、空化数0.06下不同时刻空泡形态轮廓

    Figure  7.  The outline of the cavity with different moments at the incident flow angle of attack 0° and cavitation number 0.06

    图  8  尾空泡形态演化过程

    Figure  8.  Morphological evolution of the tail cavity

    图  9  空泡内射流初期流场演化过程

    Figure  9.  Evolution of initial flow field of jet in the cavity

    图  10  空泡内射流中后期流场演化过程

    Figure  10.  Evolution of the flow field in the middle and late period of jet in the cavity

    图  11  尾空泡内流场细节

    Figure  11.  Detail of the internal flow field of the tail cavity

    图  12  射流入射后空泡内部压力场分布

    Figure  12.  Distribution of the pressure field inside the cavitation after the jet injects

    图  13  回射流冲击后航行器底部压力分布

    Figure  13.  Pressure distribution at the bottom of the vehicle after the impact of the re-entrant jet

    图  14  航行器底部监测点压力

    Figure  14.  Pressure of monitoring points at the bottom of the vehicle

    图  15  射流核心区轴线监测点压力

    Figure  15.  Pressure of monitoring points on the axis of the core area of the jet

    图  16  空化数0.06时不同攻角下射流流场相分布

    Figure  16.  Phase distribution of jet flow field under different angles of attack at cavitation number 0.06

    图  17  流场结构细节

    Figure  17.  Details of flow field structure

    图  18  不同来流攻角下回射流对超声速射流的影响

    Figure  18.  Effect of re-entrant jet on supersonic jet under different angles of attack of incident flow

    图  19  空化数0.06时不同来流攻角下监测点P7压力值

    Figure  19.  Pressure of monitoring point P7 under different attack angles of incident flow with cavitation number 0.06

    图  20  不同空化数和来流攻角下航行器表面空泡形态变化

    Figure  20.  Cavity shape on the surface of the vehicle under different cavitation numbers and angles of attack of incident flow

    图  21  来流攻角影响下航行器力学特性

    Figure  21.  The mechanical characteristics of the vehicle under the influence of the incident flow angle of attack

    图  22  航行器附体空泡及周围压力场分布

    Figure  22.  The distribution of the cavity and surrounding pressure field of the vehicle

    图  23  不同空化数和来流攻角下航行器俯仰力矩随时间变化曲线

    Figure  23.  Curves of pitching moment of the vehicle with different cavitation numbers and angles of attack of incident flow

    图  24  空化数0.04、来流攻角2°下航行器附体空泡及压力场变化

    Figure  24.  Changes in cavity on the surface of the vehicle and the surrounding pressure field with the cavitation number 0.04 and the attack angle of incident flow 2°

    表  1  参数列表

    Table  1.   List of parameters

    工况空化数来流攻角/(°)
    00.060
    10.062
    20.064
    30.040
    40.042
    50.044
    60.020
    70.022
    80.024
    下载: 导出CSV
  • [1] 刘喜燕, 袁绪龙, 罗凯, 等. 带尾裙跨介质航行体高速斜入水实验研究[J]. 爆炸与冲击, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509

    Liu Xiyan, Yuan Xulong, Luo Kai, et al. Experimental study on high-velocity oblique water entry of a trans-media vehicle with tail-skirt[J]. Explosion and Shock Waves, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509
    [2] 赵小宇, 向敏, 张为华, 等. 超音速尾流作用下通气空泡稳定性及闭合位置数值研究[J]. 力学学报, 2021, 53(12): 3298-3309. doi: 10.6052/0459-1879-21-346

    Zhao Xiaoyu, Xiang Min, Zhang Weihua, et al. Numerical study on the stability and closure position of ventailated cavity with a supersonic tail jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3298-3309. doi: 10.6052/0459-1879-21-346
    [3] 许海雨, 罗凯, 黄闯, 等. 通气超空化对水下火箭发动机性能影响[J]. 哈尔滨工业大学学报, 2021, 53(6): 41-47.

    Xu Haiyu, Luo Kai, Huang Chuang, et al. Influence of ventilated supercavitation on underwater rocket engine[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 41-47.
    [4] Kinzel P M, Krane H M, Kirschner N I, et al. A numerical assessment of the interaction of a supercavitating flow with a gas jet[J]. Ocean Engineering, 2017, 136304-313.
    [5] 张春, 王宝寿. 水下航行体超声速射流与尾空泡耦合作用初期的流场特性[J]. 兵工学报, 2022, 43(7): 1685-1694.

    Zhang Chun, Wang Baoshou. Flow field characteristics of the early-stage coupling interaction between supersonic jet and tail cavity of underwater vehicles[J]. Acta Armamentarii, 2022, 43(7): 1685-1694.
    [6] 陈玮琪. 闭合在可压气体射流上的空泡数学模型[J]. 船舶力学, 2022, 26(12): 1737-1748. doi: 10.3969/j.issn.1007-7294.2022.12.001

    Chen Weiqi. Mathematical model of cavity closure on a compressible gas jet[J]. Journal of Ship Mechanics, 2022, 26(12): 1737-1748. doi: 10.3969/j.issn.1007-7294.2022.12.001
    [7] 党建军, 刘统军, 胥银. 尾部喷流对定常超空泡形态影响的数值研究[J]. 水下无人系统学报, 2007, 15(6): 50-52. doi: 10.3969/j.issn.1673-1948.2007.06.013

    Dang Jianjun, Liu Tongjun, Xu Yin. Numerical simulation of influence of tail jet on steady supercavitation configuration[J]. Journal of Unmanned Undersea Systems, 2007, 15(6): 50-52. doi: 10.3969/j.issn.1673-1948.2007.06.013
    [8] 胡勇, 陈鑫, 鲁传敬, 等. 水下航行体尾喷燃气与通气超空泡相互作用的研究[J]. 水动力学研究与进展A辑, 2008, 23(4): 438-445.

    Hu Yong, Chen Xin, Lu Chuanjing, et al. Study on the interaction between ventilated cavitating flow and exhausted gas of an underwater vehicle[J]. Journal of Hydrodynamics, 2008, 23(4): 438-445.
    [9] 舒畅, 宫兆新, 刘桦. 自然超空泡与尾喷流相互作用的数值模拟[J]. 力学季刊, 2023, 44(1): 15-30.

    Shu Chang, Gong Zhaoxin, Liu Ye. Numerical simulation of interaction between natural supercavitationand base jet[J]. Chinese Quarterly of Mechanics, 2023, 44(1): 15-30.
    [10] 赵小宇, 向敏, 刘波, 等. 通气空泡与超音速尾喷流耦合作用实验研究[J]. 国防科技大学学报, 2021, 43(5): 53-60. doi: 10.11887/j.cn.202105006
    [11] 裴譞, 张宇文, 孟生, 等. 超空泡航行器尾喷管实验研究[J]. 应用力学学报, 2010, 27(3): 584-588, 650.
    [12] 陈学军, 王瑞, 祁晓斌, 等. 燃气尾喷对水下航行体通气空泡形态及表面压力的影响[J]. 固体火箭技术, 2023, 46(4): 521-527. doi: 10.7673/j.issn.1006-2793.2023.04.05
    [13] 许昊, 王聪, 陆宏志, 等. 水下超声速气体射流诱导尾空泡实验研究[J]. 物理学报, 2018, 67(1): 191-204. doi: 10.7498/aps.66.20171617
    [14] Moeny J M, Krane H M, Kirschner N I, et al. Jet-supercavity interaction: Insights from experiments[J]. Journal of Physics: Conference Series, 2015, 656(1): 012162.
    [15] Hunter C A. Experimental investigation of separated nozzle flows[J]. Journal of Propulsion & Power, 2004, 20(3): 527-532.
    [16] Hrubes J D. High-speed imaging of supercavitating underwater projectiles[J]. Experiments in Fluids, 2001, 30(1): 57-64. doi: 10.1007/s003480000135
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  22
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 修回日期:  2024-06-01
  • 录用日期:  2024-06-03
  • 网络出版日期:  2024-06-07

目录

    /

    返回文章
    返回
    服务号
    订阅号