• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨介质出水航行体水下信息获取技术发展与展望

张旭 李万鹏

张旭, 李万鹏. 跨介质出水航行体水下信息获取技术发展与展望[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0044
引用本文: 张旭, 李万鹏. 跨介质出水航行体水下信息获取技术发展与展望[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0044
ZHANG Xu, LI Wanpeng. Progress and Prospect of Underwater Information Acquisition Technique for Water Exit Trans-media Vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0044
Citation: ZHANG Xu, LI Wanpeng. Progress and Prospect of Underwater Information Acquisition Technique for Water Exit Trans-media Vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0044

跨介质出水航行体水下信息获取技术发展与展望

doi: 10.11993/j.issn.2096-3920.2024-0044
基金项目: 国家自然科学基金项目资助(61971424).
详细信息
    作者简介:

    张旭:张 旭(1982-), 男, 博士, 高级工程师, 主要研究方向为水下信息获取与应用技术研究

  • 中图分类号: TJ630; U75

Progress and Prospect of Underwater Information Acquisition Technique for Water Exit Trans-media Vehicle

  • 摘要: 跨介质航行体穿越海空界面出水过程中存在多相流、空泡非定常演化、强瞬态效应及载荷环境突变等特征, 对航行体的稳定航行、出水姿态和结构强度有着显著影响。为充分认识和验证航行器在海洋环境下的出水性能, 需发展与其工况相适应的水下信息获取技术。文中总结了跨介质出水航行体试验中的目标定位、景象观测、环境测量及跨介质信息传输等水下信息获取技术研究现状, 分析了高动态以及大深度等新质跨介质出水航行体发展对水下信息获取技术提出的新需求, 展望了其体系化、多模化、数字化发展趋势, 为探索解决水下高价值信息获取难题, 以及更深入掌握水下复杂环境和解译水下关键过程提供思路上和技术上的参考。

     

  • 图  1  跨介质航行体水下定位与信息提取示意图

    Figure  1.  Schematic diagram of trans-media vehicle underwater localization and information extraction

    图  2  深海大深度出水航行体水声定位及声场变化示意图

    Figure  2.  Diagram of underwater acoustic localization and sound field changes for deep sea deep water navigation vehicles

    图  3  深海大深度出水航行体测量布站与精度变化示意图

    Figure  3.  Schematic diagram of deep sea trans-media vehicle measurement and accuracy variation

    图  4  出水航行体数字化试验与相关数字技术关系图

    Figure  4.  Relationship diagram of trans-media vehicle digital test and related digital technologies

  • [1] 唐一华, 权晓波, 谷立祥, 等. 水下垂直发射航行器空泡流[M]. 北京: 中国宇航出版社, 2017.
    [2] 权晓波. 水下垂直发射航行器流体动力[M]. 哈尔滨: 哈尔滨工业大学出版社, 2020.
    [3] 姚熊亮, 赵斌, 马贵辉. 跨介质航行体出水问题研究现状与展望[J]. 航空学报, 2023, 40: 29598. doi: 10.7527/S1000-6893.2023.29598

    YAO X L, ZHAO B, MA G H. Research status and prospect of cross-media vehicle water-exit problem[J]. Acta Aeronautica et Astronautica Sinica, 2023, 40: 29598. doi: 10.7527/S1000-6893.2023.29598
    [4] 娄汉泉, 李铁. 海上靶场测控系统技术特点及应用[J]. 飞行器测控学报, 2010, 29(5): 6-10.

    LOU H Q, LI T. Technical characteristics and application of tt&c systems for sea ranges[J]. Journal of Spacecraft TT& C Technology, 2010, 29(5): 6-10.
    [5] 刘相知, 崔维成. 潜空两栖航行器的综述与分析[J]. 中国舰船研究, 2019, 14(S2): 1-14.

    LIU X Z, CUI W C. An overview and analysis of the water-air amphibious vehicles[J]. Chinese Journal of Ship Research, 2019, 14(S2): 1-14.
    [6] 潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(1): 44-51

    PAN G, SONG B W, HUANG Q G, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 44-51.
    [7] 李硕, 刘健, 徐会希, 等. 我国深海自主水下机器人的研究现状[J]. 信息科学, 2018, 48(9): 1152-1164.

    LI S, LIU J, XU H X, et al. Research status of autonomous underwater vehicles in China[J]. Scientia Sinica(Informationis), 2018, 48(9): 1152-1164.
    [8] 云忠, 温猛, 罗自荣, 等. 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54(2): 407-415. doi: 10.3785/j.issn.1008-973X.2020.02.023

    YUN Z, WEN M, LUO Z R. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of Zhejiang University(Engineering), 2020, 54(2): 407-415. doi: 10.3785/j.issn.1008-973X.2020.02.023
    [9] 侯涛刚, 靳典哲, 龚毓琰, 等. 水空跨介质航行器前沿技术进展[J]. 科技导报, 2023, 41(2): 5-22.

    HOU T G, JIN D Z, GONG Y Y, et al. Frontier technology analysis and future prospects of aquatic un-manned aerial vehicle[J]. Science & Technology Review, 2023, 41(2): 5-22.
    [10] 孙大军, 郑翠娥, 张居成, 等. 水声定位导航技术的发展与展望[J]. 中国科学院院刊, 2019, 34(3): 331-338

    SUN D J, ZHENG C E, ZHANG J C, et al. Development and prospect for underwater acoustic positioning and navigation technology[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 331-338.
    [11] CORALUPPI S. Multistatic sonar localization[J]. IEEE Journal of Oceanic Engineering, 2006, 31(4): 964-974. doi: 10.1109/JOE.2005.862117
    [12] 王志刚, 陈韶华, 王维. 分布式基阵联合定位算法仿真分析[J]. 水下无人系统学报, 2018, 26(5): 433-438.

    WANG Z G, CHEN S H, WANG W. Simulation analysis of joint localization algorithm based on distributed arrays[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 433-438.
    [13] LANDAU B V, WEST W. Estimation of the source location and the determination of the 50% probability zone for an acoustic source locating system(sls) using multiple systems of 3 sensors[J]. Applied Acoustics, 1997, 52(1): 85-100. doi: 10.1016/S0003-682X(96)00066-7
    [14] 张旭, 孙翱, 韩旭, 等. 水下垂向运动目标的海底多基站声定位方法及精度分析[J]. 声学学报, 2019, 44(2): 155-169.

    ZHANG X, SUN A, HAN X, et al. Acoustic localization scheme and accuracy analysis for underwater vertical motion target using multi-stations in the seabed[J]. Acta Acustica, 2019, 44(2): 155-169.
    [15] 陈志刚, 张伟宁, 程晶. 水下声信标应用现状与发展前景[J]. 舰船科学技术, 2021, 43(13): 114-117.

    CHEN Z G, ZHANG W N, CHENG J. Application actuality and development foreground of underwater locating devices[J], Ship Science and Technology, 2021, 43(13): 114-117.
    [16] 杨元喜, 刘焱雄, 孙大军, 等. 海底大地基准网建设及其关键技术[J]. 地球科学, 2020, 50(7): 1-10.

    YANG Y X, LIU Y X, SUN D J, et al. Seafloor geodetic network establishment and key technologies[J]. Scientia Sinica(Terrae), 2020, 50(7): 1-10.
    [17] 张旭, 孙翱, 韩旭, 等. 一种适用于水下垂向运动目标的长基线水声定位方法[J]. 南京大学学报(自然科学), 2017, 53(4): 629-637.

    ZHANG X, SUN A, HAN X, et al. A method of long baseline acoustic positioning for underwater vertical moving target[J]. Journal of Nanjing University(Natural Science), 2017, 53(4): 629-637.
    [18] 王燕, 李晴, 付进, 等. 高帧率水声同步定位解距离模糊方法研究[J]. 哈尔滨工程大学学报, 2016, 37(6): 812-818.

    WANG Y, LI Q, FU J, et al. Range ambiguity resolution method for synchronous underwater acoustic positioning with high frame rate[J]. Journal of Harbin Engineering University, 2016, 37(6): 812-818.
    [19] 郭银景, 吴琪, 苑娇娇, 等. 水下光学图像处理研究进展[J]. 电子与信息学报, 2021, 43(2): 426-435. doi: 10.11999/JEIT190803

    GUO Y J, WU Q, YUAN J J, et al. Research progress on underwater optical image processing[J]. Journal of Electronics & Information Technology, 2021, 43(2): 426-435. doi: 10.11999/JEIT190803
    [20] 张百川, 周兴华, 丁继胜, 等. 影响三维声纳成像质量的因素分析及应用[J]. 海洋测绘, 2022, 42(6): 35-39 doi: 10.3969/j.issn.1671-3044.2022.06.007

    ZHANG B C, ZHOU X H, DING J S, et al. Analysis and application of factors affecting the quality of 3d sonar imaging[J]. Hydrographic Surveying and Charting, 2022, 42(6): 35-39. doi: 10.3969/j.issn.1671-3044.2022.06.007
    [21] 左其华. 现场波浪观测技术发展和应用[J]. 海洋工程, 2008, 26(2): 124-139. doi: 10.3969/j.issn.1005-9865.2008.02.017

    ZUO Q H. Advances and applications of ocean wave measurement technology[J]. The Ocean Engineering, 2008, 26(2): 124-139. doi: 10.3969/j.issn.1005-9865.2008.02.017
    [22] 章家保, 蔡辉, 陈加银, 等. 当前海洋波浪测量的技术特点和实测分析[J]. 海洋技术学报, 2015, 34(4): 33-38

    ZHANG J B, CAI H, CHEN J Y, et al. Current status of ocean wave measuring technologies: features and case analysis[J]. Journal of Ocean Technology, 2015, 34(4): 33-38.
    [23] 周庆伟, 白杨, 封哲, 等. 海流测量技术发展及应用[J]. 海洋测绘, 2018, 38(3): 73-77. doi: 10.3969/j.issn.1671-3044.2018.03.018

    ZHOU Q W, BAI Y, FENG Z, et al. Reviews and application of ocean current measurement[J]. Hydrographic Surveying and Charting, 2018, 38(3): 73-77. doi: 10.3969/j.issn.1671-3044.2018.03.018
    [24] 潘仁红, 黄燕德. 关于走航式ADCP测流盲区计算问题的探讨[J]. 气象水文海洋仪器, 2005(1): 8-12. doi: 10.3969/j.issn.1006-009X.2005.01.003

    PAN R H, HUANG Y D. The discussion about walk navigation pattern ADCP calculation problem of measure flow blindness zone[J]. Meteorological, Hydrological and Marine Instruments, 2005(1): 8-12. doi: 10.3969/j.issn.1006-009X.2005.01.003
    [25] 徐文, 鄢社锋, 季飞, 等. 海洋信息获取、传输、处理及融合前沿研究评述[J]. 信息科学, 2016, 46(8): 1053-1085.

    XU W, YAN S F, JI F, et al. Marine information gathering, transmission, processing, and fusion: current status and future trends[J]. Scientia Sinica(Informationis), 2016, 46(8): 1053-1085.
    [26] 刘飞, 孙少杰, 韩平丽, 等. 水下偏振成像技术研究及进展[J]. 激光与光电子学进展, 2021, 58(6): 9-26.

    LIU F, SUN S J, HAN P L, et al. Development of underwater polarization imaging technology[J]. Laser & Optoelectronics Progress, 2021, 58(6): 9-26.
    [27] 苏乐伟, 段存丽, 孙亮等. 不同水质下光学偏振对距离选通成像目标识别距离的影响分析[J]. 红外与激光工程, 2024, 53(1): 210-220.

    SU L W, DUAN C L, SUN L, et al. Influence of optical polarization on underwater range-gated imaging for target recognition distance under different water quality conditions[J]. Infrared and Laser Engineering, 2024, 53(1): 210-220.
    [28] 范新南, 史朋飞. 水下光学图像增强与复原方法及应用[M]. 北京: 科学出版社, 2021.
    [29] 卞红雨, 张志刚, 刘雨希, 等. 成像声呐技术及应用[M]. 北京: 科学出版社, 2023.
    [30] 李志华, 李秋峦. 水下三维声纳目标在线运动监测与识别[J]. 船舶力学, 2015, 19(10): 1282-1288. doi: 10.3969/j.issn.1007-7294.2015.10.014

    LI Z H, LI Q L. On-line motion recognition for underwater 3D sonar object[J]. Journal of Ship Mechanics, 2015, 19(10): 1282-1288. doi: 10.3969/j.issn.1007-7294.2015.10.014
    [31] 郝紫霄, 王琦. 基于声呐图像的水下目标检测研究综述[J]. 水下无人系统学报, 2023, 31(2): 339-348. doi: 10.11993/j.issn.2096-3920.202205004

    HAO Z X, WANG Q. Underwater target detection based on sonar image[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 339-348. doi: 10.11993/j.issn.2096-3920.202205004
    [32] 刘清宇, 蔡志明. 发展新型声呐系统的几个科学问题[J]. 声学学报, 2019, 44(2): 209-213.

    LIU Q Y, CAI Z M. Several scientific problems in developing new sonar systems[J]. Acta Acustica, 2019, 44(2): 209-213.
    [33] 张天健, 魏成柱, 张裕芳, 等. 大深度浮力驱动式水下运载器的浮潜运动研究[J]. 船舶工程, 2017, 39(12): 87-94.

    ZHANG T J, WEI C Z, ZHANG Y F, et al. Study on floating and diving for deep-water buoyancy-driven vehicle[J]. Ship Engineering, 2017, 39(12): 87-94.
    [34] 赵志超, 李天辰, 谷海涛, 等. 深海运载器无动力纵倾上浮运动特性研究[J]. 水下无人系统学报, 2022, 30(5): 586-596. doi: 10.11993/j.issn.2096-3920.202111001

    ZHAO Z C, LI T C, GU H T, et al. Research on unpowered trim ascent motion characteristics of deep-sea vehicles[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 586-596. doi: 10.11993/j.issn.2096-3920.202111001
    [35] 李整林, 余炎欣. 深海声学研究进展[J]. 科学通报, 2022, 67(2): 125-134.

    LI Z L, YU Y X. Overview of deep water acoustics[J]. Chinese Science Bulletin, 2022, 67(2): 125-134.
    [36] 孙大军, 欧阳雨洁, 韩云峰, 等. 海底大地秩亏基准网快速标校方法[J]. 声学学报, 2023, 48(3): 506-514.

    SUN D J, OU Y Y J, HAN Y F, et al. Rapid calibration method for rank defect submarine geodetic station network[J]. Acta Acustica, 2023, 48(3): 506-514.
    [37] 张宁, 郭君, 尹韶平, 等. 数字孪生技术发展现状及其在水下无人系统中的应用展望[J]. 水下无人系统学报, 2022, 30(2): 137-146. doi: 10.11993/j.issn.2096-3920.2022.02.001

    ZHANG N, GUO J, YIN S P, et al. Development of digital twin technology and its application prospect in unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 137-146. doi: 10.11993/j.issn.2096-3920.2022.02.001
    [38] 张素明, 岳梦云. 基于数字孪生的火箭测试与发射过程健康管理技术研究[J]. 计算机测量与控制, 2021, 29(5): 8-14.

    ZHANG S M, YUE M Y. A rocket health management system for vehicle testing and launching base on digital twin[J]. Computer Measurement & Control, 2021, 29(5): 8-14.
    [39] 李凯, 钱浩, 龚梦瑶, 等. 基于数字孪生技术的数字化舰船及其应用探索[J]. 船舶, 2018, 29(6): 101-108.

    LI K, QIAN H, GONG M Y, et al. Digital warship and its application exploration based on digital twin technology[J]. Ship & Boat, 2018, 29(6): 101-108.
    [40] YANG Y L, HE Q L, WU W, et al. Study on the overall design method of ship power system engineering based on MBSE[J]. Chinese Journal of Ship Research, 2023, 18(5): 11-21.
    [41] 刘元清, 崔军. 海流对出水空泡演化过程影响机理数值研究[J]. 宇航总体技术, 2020, 4(3): 55-61.

    LIU Y Q, CUI J. Digital warship and its application exploration based on digital twin technology[J]. Astronautical Systems Engineering Technology, 2020, 4(3): 55-61.
    [42] 王亚东, 袁绪龙, 张宇文, 等. 波浪对导弹垂直发射水弹道影响研究[J]. 兵工学报, 2012, 33(5): 630-635.

    WANG Y D, YUAN X L, ZHANG Y W, et al. Research on the effect of wave to vertical launch missile water trajectory[J]. Acta Armamentarii, 2012, 33(5): 630-635.
    [43] 朱坤, 陈焕龙, 刘乐华, 等. 波浪相位对航行体出水过程水动力特性的影响[J]. 兵工学报, 2014, 35(3): 355-361. doi: 10.3969/j.issn.1000-1093.2014.03.010

    ZHU K, CHEN H L, LIU L H, et al. Effect of wave phase on hydrodynamic characteristics of underwater vehicle out of water[J]. Acta Armamentarii, 2014, 35(3): 355-361. doi: 10.3969/j.issn.1000-1093.2014.03.010
  • 加载中
图(4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 修回日期:  2024-04-27
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回
    服务号
    订阅号