• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大尺度跨介质航行器高速倾斜入水冲击载荷特性研究

张彤运 王聪 许海雨 夏维学 马潇健 赵静

张彤运, 王聪, 许海雨, 等. 大尺度跨介质航行器高速倾斜入水冲击载荷特性研究[J]. 水下无人系统学报, 2024, 32(3): 426-433 doi: 10.11993/j.issn.2096-3920.2024-0021
引用本文: 张彤运, 王聪, 许海雨, 等. 大尺度跨介质航行器高速倾斜入水冲击载荷特性研究[J]. 水下无人系统学报, 2024, 32(3): 426-433 doi: 10.11993/j.issn.2096-3920.2024-0021
ZHANG Tongyun, WANG Cong, XU Haiyu, XIA Weixue, MA Xiaojian, ZHAO Jing. Impact Load Characteristics of Large-Scale Trans-Medium Vehicles during High-Speed Oblique Water Entry[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 426-433. doi: 10.11993/j.issn.2096-3920.2024-0021
Citation: ZHANG Tongyun, WANG Cong, XU Haiyu, XIA Weixue, MA Xiaojian, ZHAO Jing. Impact Load Characteristics of Large-Scale Trans-Medium Vehicles during High-Speed Oblique Water Entry[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 426-433. doi: 10.11993/j.issn.2096-3920.2024-0021

大尺度跨介质航行器高速倾斜入水冲击载荷特性研究

doi: 10.11993/j.issn.2096-3920.2024-0021
基金项目: 博士后科学基金项目(2023M730836); 国家自然科学基金项目(12102484); 国家自然科学基金青年基金项目(12102475).
详细信息
    作者简介:

    张彤运(2000-), 男, 在读硕士, 主要研究方向为跨介质航行器数值仿真研究

    通讯作者:

    夏维学(1990-), 男, 讲师, 研究方向为流体力学

  • 中图分类号: TJ631; U674

Impact Load Characteristics of Large-Scale Trans-Medium Vehicles during High-Speed Oblique Water Entry

  • 摘要: 为了研究大尺度跨介质航行器高速倾斜入水冲击载荷特性, 基于流体体积多相流模型耦合S-DOF刚体运动模型构建了跨介质航行器高速倾斜入水三维非定常数值计算模型, 采用细长体高速入水自由运动试验数据对数值计算模型的计算精度进行了校核及验证, 对比研究了平头、锥头头型高速倾斜入水的冲击载荷特性。结果表明: 锥头头型入水的最大轴向、纵向冲击载荷发生的时间几乎同步, 而平头头型最大轴向冲击载荷相比纵向载荷发生的时间显著延迟; 对于最大冲击载荷, 平头头型的轴向冲击载荷大于其纵向冲击载荷, 而锥头头型的轴向、纵向冲击载荷几乎相同; 相较于平头头型, 锥头头型的轴向冲击载荷显著降低, 45°入水时, 其最大峰值约为平头头型的1/3。

     

  • 图  1  计算模型

    Figure  1.  Computational models

    图  2  计算域及边界条件

    Figure  2.  Compute domains and boundary conditions

    图  3  空泡形态(188 ms)

    Figure  3.  The shape of cavitation (188 ms)

    图  4  数值仿真与试验结果对比

    Figure  4.  Comparison of numerical simulation and experimental results

    图  5  平头航行器入水冲击载荷(10°入水角)

    Figure  5.  The shock load of a flat-headed vehicle entering the water (10° water-entry angle)

    图  6  平头航行器入水空泡形态演变(10°入水角)

    Figure  6.  Evolution of the cavity shape of flat-headed vehicle entering the water (10° water-entry angle)

    图  7  平头航行器入水冲击载荷(45°入水角)

    Figure  7.  The shock load of a flat-headed vehicle entering the water (45° water-entry angle)

    图  8  平头航行器入水空泡形态演变(45°入水角)

    Figure  8.  Evolution of the cavity shape of flat-headed vehicle entering the water (45° water-entry angle)

    图  9  锥头航行器入水轴向冲击载荷(10°入水角)

    Figure  9.  Axial impact load of cone head vehicle entering the water(45° water-entry angle)

    图  10  锥头航行器入水冲击载荷(45°入水角)

    Figure  10.  Impact load of cone head vehicle entering the water(45° water-entry angle)

  • [1] Alif M E, Husain A, Quizhpe C, et al. Water entry of spheres with impact-axis channels[J]. Physics of Fluids, 2023, 35(12): 122109. doi: 10.1063/5.0175406
    [2] Sun S Y, Zeng F, Yang Y, et al. Oblique water entry of a curved foil with varying speed[J]. Physics of Fluids, 2023, 35(12): 122101. doi: 10.1063/5.0179113
    [3] 冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术[J]. 空军工程大学学报(自然科学版), 2019, 20(3): 8-13.

    Feng Jinfu, Hu Junhua, Qi Duo. Study on development needs and key technologies of air-water trans-media vehicle[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(3): 8-13.
    [4] May A, Woodhull J C. Drag Coefficients of steel spheres entering water vertically[J]. Journal of Applied Physics, 1948, 19(12): 1109-1121. doi: 10.1063/1.1715027
    [5] Shepard T G, Abraham J, Schwalbach D, et al. Velocity and density effect on impact force during water entry of sphere[J]. Journal of Remote Sensing & GIS, 2014, 3: 129-134.
    [6] 王禹开, 王璐, 刘平安. 回转体高速入水载荷的数值计算研究[J]. 东北电力大学学报, 2022, 42(1): 10-18.

    Wang Yukai, Wang Lu, Liu Pingan. Numerical simulation of the load for the high speed water-entry of revolving projectile[J]. Journal of Northeast Dianli University, 2022, 42(1): 10-18.
    [7] 袁绪龙, 栗敏, 丁旭拓, 等. 跨介质航行器高速入水冲击载荷特性[J]. 兵工学报, 2021, 42(7): 1440-1449. doi: 10.3969/j.issn.1000-1093.2021.07.011

    Yuan Xulong, Li Min, Ding Xutuo, et al. Impact load characteristics of a trans-media vehicle during high-speed water-entry[J]. Acta Armamentarii, 2021, 42(7): 1440-1449. doi: 10.3969/j.issn.1000-1093.2021.07.011
    [8] 马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟[J]. 哈尔滨工业大学学报, 2014, 46(11): 24-29. doi: 10.11918/j.issn.0367-6234.2014.11.004

    Ma Qingpeng, Wei Yingjie, Wang Cong, et al. Numerical simulation of high-speed water entry cavity of cylinders[J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24-29. doi: 10.11918/j.issn.0367-6234.2014.11.004
    [9] 赵旭, 胡欣康, 姚蕊. 旋成体射弹倾斜入水运动仿真[J]. 国防科技大学学报, 2023, 45(4): 115-123. doi: 10.11887/j.cn.202304011

    Zhao Xu, Hu Xinkang, Yao Rui. Simulation of the oblique entry motion of convolutional projectile into water[J]. Journal of National University of Defense Technology, 2023, 45(4): 115-123. doi: 10.11887/j.cn.202304011
    [10] Song Z J, Duan W Y, Xu G D, et al. Experimental and aumerical study of the water entry of projectiles at high oblique entry speed[J]. Ocean Engineering, 2020, 211: 107574. doi: 10.1016/j.oceaneng.2020.107574
    [11] 吕红庆, 许磊, 王振清. 不同头型旋成体入水初期流场特性数值分析[J]. 兵器装备工程学报, 2022, 43(12): 34-42. doi: 10.11809/bqzbgcxb2022.12.006

    Lü Hongqing, Xu Lei, Wang Zhenqing. Numerical research on flow field characteristics of axisymmetric bodies with different head shapes during initial water entry[J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 34-42. doi: 10.11809/bqzbgcxb2022.12.006
    [12] 刘登科. 大尺度航行体高速入水缓冲降载特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
    [13] 潘光, 杨悝. 空投鱼雷入水载荷[J]. 爆炸与冲击, 2014, 34(5): 521-526. doi: 10.11883/1001-1455(2014)05-0521-06

    Pan Guang, Yang Li. Impact force encountered by water-entry airborne torpedo[J]. Explosion and Shock Waves, 2014, 34(5): 521-526. doi: 10.11883/1001-1455(2014)05-0521-06
    [14] Mirzaii I, Passandideh-Fard M. The impact of a solid object on to a liquid surface[C] //19th Annual Conference on Mechanical Engineering-ISME. Birjand, Iran: The University of Birjand, 2011.
    [15] Nguyen V T, Phan T H, Park W G. Modeling and aumerical simulation of ricochet and penetration of water entry bodies using an efficient free surface model[J]. International Journal of Mechanical Sciences, 2020, 182: 105726. doi: 10.1016/j.ijmecsci.2020.105726
    [16] 祁晓斌, 施瑶, 刘喜燕, 等. 阶梯式圆柱射弹小角度入水弹道特性研究[J]. 力学学报, 2023, 55(11): 2468-79. doi: 10.6052/0459-1879-23-212

    Qi Xiaobin, Shi Yao, Liu Xiyan, et al. Study on trajectory characteristics of stepped cylindrical projectile entering water at small angle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2468-79. doi: 10.6052/0459-1879-23-212
    [17] 周可, 黄振贵, 陈志华, 等. 跨介质航行器高速斜入水跳弹现象研究[J]. 装备环境工程, 2022, 19(5): 39-48. doi: 10.7643/issn.1672-9242.2022.05.005

    Zhou Ke, Huang Zhengui, Chen Zhihua, et al. Ricochet phenomenon of tans-media vehicle at high-speed oblique water-entry[J]. Equipment Environmental Engineering, 2022, 19(5): 39-48. doi: 10.7643/issn.1672-9242.2022.05.005
    [18] 陈国明, 刘安, 胡俊华, 等. 航行器斜入水跳弹现象研究[J]. 船舶力学, 2020, 24(5): 611-617. doi: 10.3969/j.issn.1007-7294.2020.05.006

    Chen Guoming, Liu An, Hu Junhua, et al. Research on ricochet phenomenon of a vehicle making an oblique water-entry[J]. Journal of Ship Mechanics, 2020, 24(5): 611-617. doi: 10.3969/j.issn.1007-7294.2020.05.006
    [19] Sauer J, Schnerr G H. Development of a new cavitationmodel based on bubble dynamics[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 2001, 81(S3): 561-562.
  • 加载中
图(10)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  33
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-19
  • 修回日期:  2024-04-01
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回
    服务号
    订阅号