Effectiveness Evaluation of Underwater Heterogeneous Platforms Based on ADC Model
-
摘要: 装备集群作业逐步成为提高水下任务效能的关键途径, 传统ADC模型对多型装备构成的水下异构平台任务进行协同能力评估具有一定困难。选取以时间为变量的可靠性指标、续航能力指标和通信性能指标, 建立树结构的指标综合模型, 能够对协同因素进行数值量化, 客观反映平台任务过程中的协同能力变化。以此为依据将能力矩阵进行连续化处理, 并以装备个体为分系统, 引入环境影响因子反映周边环境对装备性能的影响, 建立改进型ADC模型用于系统效能评估。以自主水下航行器和通信节点构成的水下异构平台为例, 对任务周期内的装备能力及平台效能进行评估, 研究结果表明: 该方法能够很好的结合多个协同因素进行效能评估, 具有可行性和有效性, 可以为多类型装备协同作业任务效能评估提供参考。Abstract: Equipment clusters are gradually emerging as a key way to improve the efficiency of underwater tasks. Traditional ADC models make it difficult to evaluate collaborative ability of an underwater heterogeneous platform composed of multi-type equipment. The reliability, endurance, and communication performance indicators with time variables are selected, and a comprehensive model of the tree structure is established, which can quantify the synergy factors numerically and objectively reflect the changes in synergistic ability during the platform task process. Based on this as the basis for constructing dynamic capacity matrix and using the individual as the sub-system, the environmental impact factor is introduced to reflect the impact of the surrounding environment on the equipment performance, and an improved ADC model is established for system effectiveness evaluation. Taking the underwater heterogeneous platform composed of AUVS and communication nodes as an example, the equipment capability and platform effectiveness in the mission cycle are evaluated. The research results indicated that this method can be well combined with multiple synergistic factors for effectiveness evaluation, which is feasible and effective. The improved ADC model can provide a reference for the efficiency evaluation of multi-type equipment collaborative operation tasks.
-
表 1 t时刻各装备能力
Table 1. Equipment capacities at t times
时刻t 装备1 装备2 ··· 装备n 可靠性 R1(t) R2(t) ··· Rn(t) 续航能力 T1(t) T2(t) ··· Tn(t) 表 2 水下异构平台状态
Table 2. Status of underwater heterogeneous platforms
水下异构平台可能存在的状态 状态 AUV1 AUV2 AUV3 Point1 & Point2 备注 Ca1 1 1 1 1 1代表正常,
0代表故障Ca2 1 1 0 1 Ca3 1 0 1 1 Ca4 1 0 0 1 Ca5 0 1 1 1 Ca6 0 1 0 1 Ca7 0 0 1 1 Ca8 0 0 0 1 表 3 水下异构平台可靠性参数
Table 3. Reliability parameters of underwater heterogeneous platform
水下异构平台 故障率 正常工作概率 AUV1 0.0052 0.9506 AUV2 0.0062 0.9702 AUV3 0.0062 0.9702 -
[1] 曹勇, 曹永辉, 黄桥高, 等. 水下仿生扑翼机器人的发展现状综述[J]. 数字海洋与水下攻防, 2023, 6(4): 380-405.CAO Y, CAO Y H, HUANG Q G, et al. A review of the underwater bionic flapping wing robots[J]. Digital Ocean and Underwater Warfare, 2023, 6(4): 380-405. [2] HUANG H, TANG Q, LI J, et al. A review on underwater autonomous environmental perception and target grasp, the challenge of robotic organism capture[J]. Ocean Engineering, 2020, 195: 106644. doi: 10.1016/j.oceaneng.2019.106644 [3] 张延厚, 王超, 张奇, 等. 水声目标探测和识别融合技术发展综述[J]. 信号处理, 2023, 39(10): 1711-1727.ZHANG Y H, WANG C, ZHANG Q, et al. A review of underwater acoustic target detection and recognition technology based on information fusion[J]. Journal of Signal Processing, 2023, 39(10): 1711-1727. [4] 苏泓嘉, 罗宇成, 刘飞. 装备体系效能评估及支撑技术综述[J]. 空天防御, 2023, 6(3): 29-38. doi: 10.3969/j.issn.2096-4641.2023.03.005SU H J, LUO Y C, LIU F. Review of equipment effectiveness evaluation and supporting technologies[J]. Air & Space Defense, 2023, 6(3): 29-38. doi: 10.3969/j.issn.2096-4641.2023.03.005 [5] 程恺, 张宏军, 柳亚婷, 等. 作战效能及其评估方法研究综述[J]. 系统科学学报, 2014, 22(1): 91-95.CHENG K, ZHANG H J, LIU Y T, et al. Research on combat effectiveness and evaluation methods[J]. Journal of System Science, 2014, 22(1): 91-95. [6] Shao R, Fang Z, Tao L, et al. A comprehensive G-Lz-ADC effectiveness evaluation model for the single communication satellite system in the context of poor information[J]. Grey Systems: Theory and Application, 2022, 12(2): 417-461. doi: 10.1108/GS-03-2021-0030 [7] 孟庆德, 张俊, 魏军辉, 等. 基于ADC法的舰炮武器系统作战效能评估模型[J]. 火炮发射与控制学报, 2015, 36(1): 73-76 doi: 10.3969/j.issn.1673-6524.2015.01.016MENG Q D, ZHANG J, WEI J H, et al. Operational effectiveness evaluation model of naval gun weapon system based on ADC[J]. Journal of Gun Launch & Control, 2015, 36(1): 73-76. doi: 10.3969/j.issn.1673-6524.2015.01.016 [8] Zhao Y Q, AN S, MAI Q, et al. Effectiveness modeling of air defense missile weapon system based on ADC method[J]. Systems Engineering & Electronics, 2020, 42(9): 2003. [9] 徐榕, 吴茂林, 胡平. 改进ADC方法在潜艇作战系统效能评估中的应用[J]. 火力与指挥控制, 2022, 47(8): 141-145. doi: 10.3969/j.issn.1002-0640.2022.08.023XU R, WU M L, HU P. Application of improved ADC method for submarine combat system effectiveness assessment[J]. Fire Control & Command Control, 2022, 47(8): 141-145. doi: 10.3969/j.issn.1002-0640.2022.08.023 [10] 常会振, 秦大国, 孙盛智, 等. 基于ADC模型优化的海上无人机作战效能评估[J]. 兵器装备工程学报, 2023, 44(9): 58-68. doi: 10.11809/bqzbgcxb2023.09.008CHANG H Z, Qin G K, SUN S Z, et al. Operational effectiveness evaluation of marine unmanned aerial vehicle based on ADC model optimization[J]. Journal of Ordnance Equipment Engineering, 2023, 44(9): 58-68. doi: 10.11809/bqzbgcxb2023.09.008 [11] 姚群, 舒健生, 王小亮. 信息化条件下反舰作战效能评估指标体系研究[J]. 兵器装备工程学报, 2017, 38(5): 48-51. doi: 10.11809/scbgxb2017.05.011YAO Q, Shu J S, WANG X L. Effectiveness evaluation index system of anti-ship combat under the informationization condition[J]. Journal of Ordnance Equipment Engineering, 2017, 38(5): 48-51. doi: 10.11809/scbgxb2017.05.011 [12] 孟庆玉, 张静远, 宋保维. 鱼雷作战效能分析[M]. 国防工业出版社, 2003. [13] 欧俊麟. 一种多AUV协同系统搜潜效能研究[D]. 西安: 西北工业大学, 2019. [14] 莫军, 李博. 海洋环境对潜艇作战的影响效能[J]. 四川兵工学报, 2011, 32(9): 1-3.MO J, Li B. Effect of ocean environment impact for submarine operation[J]. Journal of Sichuan Ordnance, 2011, 32(9): 1-3. [15] 莫军, 田亚龙. 海洋环境对水下航行安全影响的综合评估[J]. 舰船科学技术, 2012, 34(10): 89-93. doi: 10.3404/j.issn.1672-7649.2012.10.019MO J, TIAN Y L. The comprehensive assessment about the marine environment on submarine navigation safety influence[J]. Ship Science and Technology, 2012, 34(10): 89-93. doi: 10.3404/j.issn.1672-7649.2012.10.019 [16] Tholen C, Nolle L, Wewner J. On the influence of localisation and communication error on the behaviour of a swarm of autonomous underwater vehicles[C]//23rd International Conference on Soft Computing. [S.l.]: Springer, 2017: 68-79. [17] 杨策, 董理, 张志华, 等. 鱼雷生产定型实航工作可靠度的Bayes评估方法[J]. 火力与指挥控制, 2016, 41(3): 123-126, 131. doi: 10.3969/j.issn.1002-0640.2016.03.030YANG C, Dong L, Zhang Z H, et al. A Bayesian evaluation method for trial reliability of torpedo production approval[J]. Fire Control & Command Control, 2016, 41(3): 123-126, 131. doi: 10.3969/j.issn.1002-0640.2016.03.030 [18] 宋保维. 鱼雷系统工程原理与方法[M]. 哈尔滨工程大学出版社, 2010. [19] MENG J, RICCO M, LUO G, et al. An overview and comparison of online implementable SOC estimation methods for lithium-ion battery[J]. IEEE Transactions on Industry Applications, 2017, 54(2): 1583-1591. [20] 高进兴, 陈俊铭, 左添仲. 电池装置的剩余容量与剩余使用时间的估算方法: CN201110048672.6 [P]. 2011-09-28. [21] LIANG Q, Ou J, Yan X, et al. Effect of nodes movement on all-terminal reliability of multi-AUV cooperative system[C]//OCEANS 2018 MTS/IEEE Charleston. Charleston, USA: IEEE, 2018: 1-6. [22] 孙天元. 多AUV协同系统拓扑结构可靠性研究[D]. 西安: 西北工业大学, 2014.