[1] |
黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215-231. doi: 10.13973/j.cnki.robot.190392Huang Yan, Li Yan, Yu Jiancheng, et al. State-of-the-art and development trends of AUV intelligence[J]. Robot, 2020, 42(2): 215-231. doi: 10.13973/j.cnki.robot.190392
|
[2] |
陈霄, 刘忠, 董蛟, 等. 欠驱动无人艇路径跟踪控制算法[J]. 海军工程大学学报, 2018, 30(3): 108-112.Chen Xiao, Liu Zhong, Dong Jiao, et al. Path following algorithm of underactuated USV[J]. Journal of Naval University of Engineering, 2018, 30(3): 108-112.
|
[3] |
Qiao S H, Fan Y S, Wang G F. Radar target tracking for unmanned surface vehicle based on square root Sage-Husa adaptive robust Kalman filter[J]. Sensors, 2022(22): 2924.
|
[4] |
饶六中, 王建华, 郭翔, 等. 基于单目视觉的无人水面艇目标跟踪方法[J]. 传感器与微系统, 2022, 41(7): 44-51.Rao Liuzhong, Wang Jianhua, Guo Xiang, et al. Monocular vision-based method for target tracking of USV[J]. Transducer and Microsystem Technologies, 2022, 41(7): 44-51.
|
[5] |
秦世洋, 张腾, 武绍宽, 等. 水上无人艇目标跟踪控制方法研究[J]. 中北大学学报(自然科学版), 2020, 41(2): 149-160.Qin Shiyang, Zhang Teng, Wu Shaokuan, et al. Target tracking of unmanned surface vehicle based on model predicitive control[J]. Journal of North University of China(Natural Scienc Edition), 2020, 41(2): 149-160.
|
[6] |
黄胜昔, 刘华. 基于加性无迹卡尔曼滤波的目标跟踪方法[J]. 计算机工程与应用, 2010, 46(8): 214-216.Huang Shengxi, Liu Hua. Method for radar target tracking based on additive sequential unscented Kalman filter[J]. Computer Engineering and Applications, 2010, 46(8): 214-216.
|
[7] |
高剑, 徐德民, 严卫生, 等. 无迹卡尔曼滤波及其在三维水下目标跟踪系统中的应用[J]. 船舶工程, 2005, 27(3): 24-28. doi: 10.3969/j.issn.1000-6982.2005.03.010Gao Jian, Xu Demin, Yan Weisheng, et al. UKF and its application to 3-D underwater target tracking system[J]. Ship Engineering, 2005, 27(3): 24-28. doi: 10.3969/j.issn.1000-6982.2005.03.010
|
[8] |
李峰. 自主水下航行器目标跟踪方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
|
[9] |
丁浩晗, 冯辉, 徐海洋. 基于自适应无迹卡尔曼滤波的动力定位状态估计[J]. 大连海事大学学报, 2016, 42(4): 8-12. doi: 10.16411/j.cnki.issn1006-7736.2016.04.002Ding Haohan, Feng Hui, Xu Haiyang. Attitude estimation of dynamic positioning system based on adaptive unscented Kalman filter[J]. Journal of Dalian Maritime University, 2016, 42(4): 8-12. doi: 10.16411/j.cnki.issn1006-7736.2016.04.002
|
[10] |
朱齐丹, 马俊达, 刘可. 基于扰动观测器的无人水面船鲁棒轨迹跟踪[J]. 电机与控制学报, 2016, 20(12): 66-73. doi: 10.15938/j.emc.2016.12.009Zhu Qidan, Ma Junda, Liu Ke. A nonlinear disturbance observer based on robust approach to the trajectory tracking of an unmanned surface vehicle[J]. Electric Machines and Control, 2016, 20(12): 66-73. doi: 10.15938/j.emc.2016.12.009
|
[11] |
陈烨. 近岸浅海环境下UUV的动目标跟踪方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
|
[12] |
付悦文. 小型无人艇的无模型自适应跟踪方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
|
[13] |
时晶晶. 小型自主水下航行器目标跟踪控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
|
[14] |
庄佳园, 苏玉民, 廖煜雷, 等. 基于航海雷达的水面无人艇局部路径规划[J]. 上海交通大学学报, 2012, 46(9): 1372-1375. doi: 10.16183/j.cnki.jsjtu.2012.09.005Zhuang Jiayuan, Su Yumin, Liao Yulei, et al. Unmanned surface vehicle local path planning based on marine radar[J]. Journal of ShanHai Jiaotong University, 2012, 46(9): 1372-1375. doi: 10.16183/j.cnki.jsjtu.2012.09.005
|
[15] |
周焕银, 封锡盛, 胡志强, 等. 基于多辨识模型优化切换的USV航向动态反馈控制[J]. 机器人, 2013, 35(5): 553-557.Zhou Huanyin, Feng Xisheng, Hu Zhiqiang, et al. Dynamic feedback controller based on optimized switching of multiple identification models for course control of unmanned surface vehicle[J]. Robot, 2013, 35(5): 553-557.
|
[16] |
Fan Y S, Sun Y T, Wang G F. On model parameter identification and trajectory tracking control for USV based on backstepping[C]//Proceedings of the 36th Chinese Control Conference. Dalian, China: Chinese Control Conference, 2017: 4757-4761.
|