Underwater Adaptive End Effector Based on Biomimetic Grasping Mechanism of Soft-rigid Interaction
-
摘要: 水下无人装备是国家海洋科技实力的重要象征, 广泛应用于资源勘探、科研及国防安全等领域。其末端执行器——水下夹爪的性能, 直接决定任务执行效能。当前商业夹爪难以同时满足强负载与高适应性需求, 难以兼顾"无损抓取"与"强力持握"的双重要求。文中提出一种新型仿生刚柔耦合夹爪设计"LobSTER Gripper", 灵感源自龙虾钳部生物结构。该夹爪采用"柔性指外覆刚性指"的仿生反转结构: 通过具有被动全向适应性的软体手指实现初始"柔触"包络, 再由内部刚性手指提供可靠"刚夹"持握, 无需复杂驱动控制即可分阶段完成刚度切换。实验验证显示, 该夹爪在位姿扰动场景下抓取成功率达100%, 显著优于传统刚性夹爪的80%。这一设计为水下自适应抓持提供了低成本、高可靠性的易迁移解决方案, 具备显著的工程应用价值与推广前景。Abstract: Underwater unmanned systems, vital to national marine technology, are extensively used in resource exploration, research, and defense. The performance of their end-effectors-underwater grippers is crucial to mission success. Existing grippers often fail to combine high load capacity with adaptability, or to balance “non-destructive grasping” with “firm holding”. Inspired by lobster claws, this study proposes a novel bio-inspired hybrid rigid-soft gripper, the “LobSTER Gripper”. It uses a bionic reversed structure: soft fingers with passive compliance provide gentle initial contact, while internal rigid digits ensure secure holding, enabling phased stiffness adaptation without complex control. Tests show a 100% success rate under pose disturbances, significantly outperforming conventional rigid grippers (80%). The design offers a low-cost, reliable, and easily transferable solution for adaptive underwater grasping with broad application potential.
-
Key words:
- underwater grasping /
- gripper design /
- tactile sensing /
- soft-rigid gripper
-
表 1 近年水下夹爪及其触觉传感信息汇总
Table 1. Summary of recent years' underwater gripper designs and tactile sensing information
-
[1] LIU Y, ZHANG J, XIANG X, et al. Design, implementation and verification of hardware-in-the-loop control system for work-class ROVs[J]. Ocean Engineering, 2024, 313: 119605. doi: 10.1016/j.oceaneng.2024.119605 [2] MAZZEO A, AGUZZI J, CALISTI M, et al. Marine robotics for deep-sea specimen collection: A systematic review of underwater grippers[J]. Sensors 2022, 22(2), 648. [3] SIVČEV S, COLEMAN J, OMERDIĆ E, et al. Underwater manipulators: A review[J]. Ocean Engineering, 2018, 163: 431-450. doi: 10.1016/j.oceaneng.2018.06.018 [4] ZHANG Y, KONG D, SHI Y, et al. Recent progress on underwater soft robots: adhesion, grabbing, actuating, and sensing[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1196922. doi: 10.3389/fbioe.2023.1196922 [5] STUART H S, WANG S, CUTKOSKY M R. Tunable contact conditions and grasp hydrodynamics using gentle fingertip suction[J]. IEEE Transactions on Robotics, 2019, 35(2): 295-306. doi: 10.1109/TRO.2018.2880094 [6] LICHT S, COLLINS E, MENDES M L, et al. Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools[J]. Soft Robotics, 2017, 4(4): 305-16. doi: 10.1089/soro.2017.0028 [7] SUN J, ZHANG Q, LU Y, et al. A review of touching-based underwater robotic perception and manipulation[J]. Machines, 2025, 13(1): 41. doi: 10.3390/machines13010041 [8] 李原正, 王天润, 关堂镇, 等. 基于液态金属型摩擦纳米发电的水下仿生触须传感器[J]. 水下无人系统学报, 2024, 32(5): 794-800.LI Y Z, WANG T R, GUAN T Z, et al. Underwater biomimetic whisker sensor based on liquid metal and triboelectric nanogenerator[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 794-800. [9] WU M, ZHENG X, LIU R, et al. Glowing sucker octopus (stauroteuthis syrtensis)‐inspired soft robotic gripper for underwater self‐adaptive grasping and sensing[J]. Advanced Science, 2022, 9(17): 2104382. doi: 10.1002/advs.202104382 [10] XU P, LIU J, LIU X, et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception[J]. npj Flexible Electronics, 2022, 6(1): 25. doi: 10.1038/s41528-022-00160-0 [11] LIU S, ZHANG D, FU X, et al. Tactile sensing for soft robotic manipulators in 50 MPa hydrostatic pressure environments[J]. Advanced Intelligent Systems, 2023, 5(12): 2300296. doi: 10.1002/aisy.202300296 [12] JI H, LAN Y, NIE S, et al. Development of an anthropomorphic soft manipulator with rigid-flexible coupling for underwater adaptive grasping[J]. Soft Robotics, 2023, 10(6): 1070-82. doi: 10.1089/soro.2022.0215 [13] VAR S C, JOVANOVA J. Design of a soft underwater gripper with SMA actuation; proceedings of the Smart materials, adaptive structures and intelligent systems, F, 2023[C]//ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems(ASME). Austin, Texas, USA: ASME, 111702. [14] WU M, AFRIDI W H, WU J, et al. Octopus-inspired underwater soft robotic gripper with crawling and swimming capabilities[J]. Research, 2024, 7: 0456. doi: 10.34133/research.0456 [15] GUO N, HAN X D, ZHONG S Q, et al. Proprioceptive state estimation for amphibious tactile sensing[J]. IEEE Transactions on Robotics, 2024, 40: 4662-4676 . doi: 10.1109/TRO.2024.3463509 [16] GUO N, HAN X, LIU X, et al. Autoencoding a soft touch to learn grasping from on-land to underwater[J]. Advanced Intelligent Systems, 2024, 6(1): 2300382. doi: 10.1002/aisy.202300382 [17] LIU X, HAN X, HONG W, et al. Proprioceptive learning with soft polyhedral networks[J]. International Journal of Robotics Research, 2024, 43(12): 1916-1935. doi: 10.1177/02783649241238765 [18] WU T, DONG Y, LIU X, et al. Vision-based tactile intelligence with soft robotic metamaterial[J]. Materials & Design, 2024, 238. [19] GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft robotics, 2016, 3(1): 23-33. doi: 10.1089/soro.2015.0019 [20] SUO F, HUI X, HUA P, et al. A biomimetic rigid-soft hybrid underwater gripper with compliance, stability, precise control, and high load capacity[J]. IEEE Transactions on Robotics, 2025, 41: 3099-3112. doi: 10.1109/TRO.2025.3562458 [21] KIM M, OH J, SON D. Layer-jamming soft gripper for improved stiffness control and underwater adhesion[J]. Extreme Mechanics Letters, 2025, 77: 102322. doi: 10.1016/j.eml.2025.102322 [22] CHEN H, LI Y, XU P, et al. Octopus-inspired soft gripper with embedded triboelectric tactile sensor for underwater target recognition and grasp[J]. Nano Energy, 2025, 140: 111007. doi: 10.1016/j.nanoen.2025.111007 [23] QU J, YUAN Q, LI Z, et al. All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping[J]. Nano Energy, 2023, 111: 108387. doi: 10.1016/j.nanoen.2023.108387 [24] SONG Z, WANG Z, LIU B, et al. A soft gripper based on PneuNets structure with stiffness-variable-enhanced load capacity for object grasping[J]. Sensors and Actuators A: Physical, 2025, 383: 116253. doi: 10.1016/j.sna.2025.116253 [25] SUBAD R A S I, CROSS L B, PARK K. Soft robotic hands and tactile sensors for underwater robotics[J]. Applied Mechanics, 2021, 2(2): 356-382. doi: 10.3390/applmech2020021 [26] 常宗瑜, 张扬, 郑方圆, 等. 水下机器人-机械手系统研究进展: 结构、建模与控制[J]. 机械工程学报, 2020, 56(19): 53-69. doi: 10.3901/JME.2020.19.053CHANG Z Y, ZHANG Y, ZHENG F Y, et al. Research progress of underwater vehicle-manipulator systems: configuration, modeling and control[J]. Journal of Mechanical Engineering, 2020, 56(19): 53-69. doi: 10.3901/JME.2020.19.053 [27] ZAREBIDOKI M, DHUPIA J S, LIAROKAPIS M, et al. A cable‐driven underwater robotic system for delicate manipulation of marine biology samples[J]. Journal of Field Robotics, 2024, 41(8): 2615-2629. doi: 10.1002/rob.22381 [28] SAKAGAMI N, TAKEUCHI K, KOGANEZAWA K. Numerical and Experimental Testing of Underwater Gripper with Adjustable Stiffness Joints[C]//2020 IEEE/SICE International Symposium on System Integration(SII). Honolulu, HI, USA: IEEE, 2020: 1118-1122. [29] TEOH Z E, PHILLIPS B T, BECKER K P, et al. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms[J]. Science Robotics, 2018, 20(3): 5276. [30] LI G, WONG T-W, SHIH B, et al. Bioinspired soft robots for deep-sea exploration[J]. Nature Communications, 2023, 14(1): 7097. doi: 10.1038/s41467-023-42882-3 [31] SINATRA N R, TEEPLE C B, VOGT D M, et al. Ultragentle manipulation of delicate structures using a soft robotic gripper[J]. Science Robotics, 2019, 4(33): 5425. doi: 10.1126/scirobotics.aax5425 [32] 熊啸. 水下软体机器人仿生结构设计和研究[D]. 哈尔滨: 哈尔滨工程大学, 2024. [33] STUART H, WANG S, KHATIB O, et al. The ocean one hands: An adaptive design for robust marine manipulation[J]. The International Journal of Robotics Research, 2017, 36(2): 150-166. doi: 10.1177/0278364917694723 [34] MUSCOLO G G, MORETTI G, CANNATA G. SUAS: A novel soft underwater artificial skin with capacitive transducers and hyperelastic membrane[J]. Robotica, 2019, 37(4): 756-777. doi: 10.1017/S0263574718001315 [35] ZHANG J, HAN P, LIU Q, et al. The design of underwater tactile force sensor with differential pressure structure and backpropagation neural network calibration[J]. Measurement and Control, 2024, 57(2): 124-138. doi: 10.1177/00202940231194116 [36] 郭力楠. 基于压电式仿海豹胡须传感器的水下目标尾流感知技术研究[D]. 大连, 大连海事大学, 2024. [37] LI T, FU W, LEI C, et al. Chapter 1 - current status of anti-EGFR agents[M]. HU S. Novel Sensitizing Agents for Therapeutic Anti-EGFR Antibodies. Academic Press. 2023. [38] MERIBOUT M, ABULE TAKELE N, DEREGE O, et al. Tactile sensors: A review[J]. Measurement, 2024, 238: 115332. doi: 10.1016/j.measurement.2024.115332 [39] SUBAD R A, SAIKOT M M, PARK K. Soft multi-directional force sensor for underwater robotic application[J] . Sensors. 2022; 22(10): 3850. [40] KAMPMANN P, BüSKENS C, WANG S, et al. Adaptive control for underwater gripping systems[M]. AI Technology for Underwater Robots. Springer. 2019. [41] JIANG H, HAN X, JING Y, et al. Rigid-Soft interactive design of a lobster-inspired finger surface for enhanced grasping underwater[J]. Frontiers In Robotics and AI, 2021, 8: 78717. -