Analysis of Spatiotemporal Characteristics for Underwater Target's Comprehensive Magnetic Field
-
摘要: 水下目标辐射磁场的精确建模对磁探测技术的发展具有重要意义。目标辐射磁场主要分为磁异常场和尾流磁场, 而磁传感器在探测时通常接收的是磁总场信号。目前的研究主要针对磁异常场和尾流磁场分别进行仿真分析, 缺乏对两者集成后的辐射机理、传播模型、时空特性和衰减规律的系统研究, 难以有效推动水下目标磁探测技术的发展。为此, 文中提出一种水下目标综合磁场时空特性分析方法, 采用COMSOL和MATLAB软件分别对磁异常场和尾流磁场进行建模研究, 经矢量叠加集成两种磁场模型, 综合分析目标辐射磁场的时空特性及衰减规律, 提升了综合磁场的求解效率与模型精度, 同时揭示了目标运动参数对综合磁场的具体影响规律, 为水下目标磁探测的高精度建模提供了理论支撑。Abstract: The accurate modeling of the radiated magnetic field of underwater targets is of great significance to the development of magnetic detection technology. The target radiation magnetic field mainly consists of magnetic anomaly field and wake magnetic field, while the magnetic sensor usually receives the total magnetic field signal during detection. Current research mainly focuses on the simulation analysis of magnetic anomaly fields and wake magnetic fields respectively, lacking systematic studies on the radiation mechanism, propagation model, spatiotemporal characteristics and attenuation laws after their integration. This makes it difficult to effectively promote the development of underwater target magnetic detection technology. To this end, this paper proposes a method for analyzing the spatiotemporal characteristics of the comprehensive magnetic field of underwater targets. COMSOL and MATLAB software are used to model and study the magnetic anomaly field and wake magnetic field respectively. By integrating the two magnetic field models through vector superposition, the spatiotemporal characteristics and attenuation laws of the target's radiated magnetic field are comprehensively analyzed, which improves the solution efficiency and model accuracy of the comprehensive magnetic field. At the same time, it reveals the specific influence law of the target motion parameters on the comprehensive magnetic field, providing theoretical support for the high-precision modeling of underwater target magnetic detection.
-
Key words:
- magnetic anomaly /
- wake magnetic /
- joint simulation /
- magnetic field modeling
-
表 1 水下目标和计算域参数设置
Table 1. Underwater target and computation domain parameters setting
名称 参数 总长/m 107.6 最大直径/m 12.2 外壳厚度/m 50 相对磁导率 200 计算域长度/m 1 000 海水电导率/(S·m−1) 4 海水相对磁导率 1 海水相对介电常数 80 表 2 不同航速时的目标综合磁场矢量场最大幅值
Table 2. Maximum magnitude of the target's comprehensive magnetic vector field at different sailing speeds
航行速度/kn $\max \left| {{B_x}} \right|$/nT $\max \left| {{B_y}} \right|$/nT $\max \left| {{B_{\textit{z}}}} \right|$/nT 22.0 74.58 18.90 18.07 21.5 63.43 12.88 18.07 21.0 54.69 8.20 18.07 20.5 48.44 4.88 18.07 20.0 44.37 2.73 18.07 19.5 41.99 1.48 18.07 19.0 40.74 0.84 18.07 18.5 40.30 0.55 18.07 18.0 40.25 0.47 18.07 表 3 不同潜深时的目标综合磁场矢量场最大幅值
Table 3. Maximum magnitude of the target's comprehensive magnetic vector field at different diving depths
下潜深度/m $\max \left| {{B_x}} \right|$/nT $\max \left| {{B_y}} \right|$/nT $\max \left| {{B_{\textit{z}}}} \right|$/nT 80 87.70 16.23 28.54 85 70.88 10.30 25.44 90 59.16 6.45 22.60 95 50.81 4.23 20.16 100 44.37 2.73 18.06 105 39.40 1.75 16.23 110 35.52 1.20 14.71 115 32.29 0.81 13.29 120 29.60 0.65 12.04 -
[1] LIDA T, ELEFTHERIOS B, PANAGIOTIS P. Magnetic anomaly detection of moving objects[J]. Physica B: Condensed Matter, 2024, 676: 415659. doi: 10.1016/j.physb.2023.415659 [2] LIU Y F, ZHANG N, SHI Z S. Research on a matching detection method for magnetic anomaly of underwater targets[J]. Aip Advances, 2023, 13(2): 1-11. [3] ZHAO Y, ZHANG J H, LI J H, et al. A brief review of magnetic anomaly detection[J]. Measurement Science and Technology, 2021, 32(4): 042002. [4] HUANG B, LIU Z Y, XU Y J, et al. Mechanism and evolution of the wake magnetic field generated by underwater vehicles[J]. Ocean Engineering, 2024, 303: 117779. doi: 10.1016/j.oceaneng.2024.117779 [5] 侯希晨, 孙玉东, 吴江海. 基于PSO算法的磁偶极子阵列舰艇磁场模拟研究[J]. 舰船科学技术, 2022, 44(18): 159-164. doi: 10.3404/j.issn.1672-7649.2022.18.033HOU X C, SUN Y D, WU J H. Magnetic field modelling of ship using magnetic dipole array based on PSO algorithm[J]. Ship Science and Technology, 2022, 44(18): 159-164 doi: 10.3404/j.issn.1672-7649.2022.18.033 [6] WOLOSZYN M, TARNAWSKI J. Magnetic signature reproduction of ferromagnetic ships at arbitrary geographical position, direction and depth using a multi-dipole model[J]. Scientific Reports, 2023, 13: 14601. doi: 10.1038/s41598-023-41702-4 [7] 章尧卿, 毛世超. 潜艇空间磁场的建模分析与运用[J]. 舰船电子工程, 2018, 38(1): 136-139. doi: 10.3969/j.issn.1672-9730.2018.01.033ZHANG Y Q, MAO S C. Modeling analysis and application of submarine space magnetic field[J]. Ship Electronic Engineering, 2018, 38(1): 136-139. doi: 10.3969/j.issn.1672-9730.2018.01.033 [8] 刘辉, 钟炀, 吴桐, 等. 基于面磁矩分布的潜艇磁场计算[J]. 舰船科学技术, 2023, 45(6): 28-32. doi: 10.3404/j.issn.1672-7649.2023.06.006LIU H, ZHONG Y, WU T, et al. Submarine magnetic field calculation based on surface magnetic moment distribution[J]. Ship Science and Technology, 2023, 45(6): 28-32. doi: 10.3404/j.issn.1672-7649.2023.06.006 [9] 石昱, 卞雷祥, 庄志洪, 等. 未知姿态目标航磁异常探测的最优飞行方向分析[J]. 系统工程与电子技术, 2024, 46(1): 42-50.SHI Y, BIAN L X, ZHUANG Z H, et al. Optimal flight direction analysis for aeromagnetic anomaly detection of unknown attitude targets[J]. Systems Engineering and Electronics, 2024, 46(1): 42-50. [10] 赵爽. 水下目标尾流辐射磁场特性研究[D]. 西安: 西北工业大学, 2024. [11] 兰青, 闫林波, 任斌斌. KCS船舶尾流感应电磁场仿真分析[J]. 水下无人系统学报, 2024, 32(5): 818-822. doi: 10.11993/j.issn.2096-3920.2023-0101LAN Q, YAN L B, REN B B. Simulation analysis of KCS wake induced electromagnetic field[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 818-822. doi: 10.11993/j.issn.2096-3920.2023-0101 [12] 闫林波, 张建生, 董敏, 等. 多船尾流磁异常特性分析与仿真系统设计[J]. 水下无人系统学报, 2024, 46(2): 801-807.YAN L B, ZHANG J S, DONG M, et al. Magnetic anomaly characteristics analysis of multi-ship wake and simulation system design[J]. Journal of Unmanned Undersea Systems, 2024, 46(2): 801-807. [13] 朱荣荣, 王志刚, 魏先利, 等. 水下无人潜航器内部磁场有限元仿真建模及其分布特性[J]. 水下无人系统学报, 2024, 32(5): 88-100.ZHU R R, WANG Z G, WEI X L, et al. UUV internal magnetic field modeling and distribution characteristics based on finite element simulation[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 88-100. [14] ZHAO S, WANG H L. Research on the characteristics of wake-radiated magnetic fields based on underwater targets[C]//2023 6th International Conference on Information Communication and Signal Processing (ICICSP). Xi’an, China: IEEE, 2023: 1137-1141. [15] DAVID W T, MATTHIAS K G. Finite element convergence studies using COMSOL 4.0a and LiveLink for MATLAB[J]. Technical Report HPCF, 2010, 8: 1-16. [16] 孙晓永. 磁目标探测联合仿真技术研究[D]. 长沙: 国防科技大学, 2016. [17] 杨密栋. 基于MATLAB和COMSOL联合仿真的磁性液体密封耐压影响因素研究[D]. 北京: 北京交通大学, 2021. -