Multi-objective point path planning for AUVs based on improved whale optimisation and fluid perturbation algorithms
-
摘要: 针对在深海环境下, 自主水下航行器(AUV)在多目标点路径规划中效率低、传统鲸鱼优化算法(WOA)易陷入局部最优且难以适应三维避障需求的问题, 提出一种融合流体扰动算法与改进鲸鱼优化算法(IWOA)的协同规划策略。通过混沌映射生成高覆盖率初始解, 结合贪心算法构造局部最优序列, 设计混合种群初始化方法, 解决传统WOA随机初始化导致的解质量差问题。针对旅行商问题(TSP)的离散特性, 提出基于随机插入与局部翻转的离散化位置更新策略, 增强算法逃离局部最优能力。引入精英保留机制, 通过最优个体定向替换最差个体的迭代优化模式, 保障算法全局收敛性。在路径生成阶段, 建立三维流体扰动场模型, 通过障碍物扰动矩阵修正原始流场方向, 实现复杂障碍物环境下的连续避障。仿真结果表明: 文中所提IWOA算法较传统遗传算法和粒子群算法的平均路径长度分别减少15.4%和7.5%, 计算效率提升45.5%和16.8%。Abstract: To address the challenges of low path planning efficiency for Autonomous Underwater Vehicles (AUVs) in multi-objective path planning in deep-sea environment, as well as the limitations of the traditional Whale Optimization Algorithm (WOA) in terms of susceptibility to local optima and inadequate adaptability to three-dimensional obstacle avoidance requirements, this study proposes a collaborative planning strategy that integrates an interfered fluid dynamic algorithm with an enhanced whale optimization approach. A hybrid population initialization method is developed by combining chaotic mapping to generate high-coverage initial solutions and a greedy algorithm to construct locally optimal sequences, effectively addressing the issue of poor solution quality caused by random initialization in traditional WOA. For the discrete characteristics of the Traveling Salesman Problem (TSP), a discrete position update strategy based on random insertion and local inversion is proposed, significantly enhancing the algorithm’s capability to escape local optima. An elite retention mechanism is introduced to ensure the global convergence of the algorithm through an iterative optimization framework that replaces the worst individuals with the optimal ones. During the path generation phase, a three-dimensional interfered fluid dynamic field model is established, where obstacle perturbation matrices adjust the original flow field direction to achieve continuous obstacle avoidance in complex environments. Simulation results demonstrate that the proposed algorithm reduces the average path length by 15.4% and 7.5% compared to traditional Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), respectively, while improving computational efficiency by 45.5% and 16.8%.
-
Key words:
- AUV /
- multi-target /
- path planning /
- WOA /
- travelling salesman problem /
- interfered fluid
-
表 1 目标点中心坐标
Table 1. Coordinates of the centre of target points
编号 中心坐标 编号 中心坐标 1 [40, −90, 20] 5 [100, −135, 20] 2 [230, −80, 30] 6 [100, 20, 20] 3 [150, 100, 20] 7 [150, −75, 20] 4 [20, 100, 10] 8 [200, 25, 20] 表 2 参数设置
Table 2. parameter setting
参数名称 数值 种群数量 10 迭代次数 50 C/(m/s) 10 $ {\rho _0} $ 1.5 $ {\sigma _0} $ 0.1 表 3 3种算法访问顺序对比
Table 3. Comparison of access orders of three algorithms
算法 访问顺序 PSO [6, 8, 3, 4, 1, 5, 7, 2] GA [1, 5, 7, 8, 2, 6, 3, 4] IWOA [4, 6, 3, 8, 2, 7, 5, 1] 表 4 复杂环境下3种算法访问顺序对比
Table 4. Comparison of access order of three algorithms in complex environment
算法 访问顺序 PSO [2 13 7 14 4 8 9 6 3 12 10 11 5 1] GA [11 1 5 7 13 2 6 8 3 9 12 14 4 10] IWOA [14 4 10 12 9 3 8 6 11 1 5 7 2 13] -
[1] 郭银景, 鲍建康, 刘琦, 等. AUV实时避障算法研究进展[J]. 水下无人系统学报, 2020, 28(4): 351-358, 369. doi: 10.11993/j.issn.2096-3920.2020.04.001GUO Y J, BAO J K, LIU Q, et al. Research progress of real-time obstacle avoidance algorithms for unmanned undersea vehicle: A review[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 351-358, 369. doi: 10.11993/j.issn.2096-3920.2020.04.001 [2] 王磊, 刘晶晶, 齐俊艳, 等. 基于改进人工势场法的AUV全局路径规划[J]. 河南理工大学学报(自然科学版), 2024, 43(1): 132-139.WANG L, LIU J J, QI J Y, et al. A global path planning algorithm for AUV based on improved artificial potential fieldmethod[J]. Journal of Henan Polytechnic University (Natural Science), 2024, 43(1): 132-139. [3] 赵晓, 王铮, 黄程侃, 等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903-910.ZHAO X, WANG Z, HUANG C K, et al. Mobile robot path planning based on an improved A* algorithm[J]. ROBOT, 2018, 40(6): 903-910. [4] 杨桂华, 卫嘉乐. 基于改进A*与DWA算法的物流机器人路径规划[J]. 科学技术与工程, 2022, 22(34): 15213-15220. doi: 10.3969/j.issn.1671-1815.2022.34.028YANG G H, WEI J L. Logistics robot path planning based on Improved A* and DWA algorithm[J]. Science Technology and Engineering, 2022, 22(34): 15213-15220. doi: 10.3969/j.issn.1671-1815.2022.34.028 [5] 朱蟋蟋, 孙兵, 朱大奇. 基于改进D*算法的AUV三维动态路径规划[J]. 控制工程, 2021, 28(4): 736-743.ZHU X X, SUN B, ZHU D Q. Three-dimensional dynamic path planning of AUV based on improved D* algorithm[J]. Control Engineering of China, 2021, 28(4): 736-743. [6] 欧阳子路, 王鸿东, 黄一, 等. 基于改进RRT算法的无人艇编队路径规划技术[J]. 中国舰船研究, 2020, 15(3): 18-24.OUYANG Z L, WANG H D, HUANG Y, et al. Path planning technologies for USV formation based on improved RRT[J]. Chinese Journal of Ship Research, 2020, 15(3): 18-24. [7] 刘成菊, 韩俊强, 安康. 基于改进RRT算法的RoboCup机器人动态路径规划[J]. 机器人, 2017, 39(1): 8-15.LIU C J, HAN J Q, AN K. Dynamic path planning based on an improved RRT algorithm for RoboCup robot[J]. ROBOT, 2017, 39(1): 8-15. [8] 朱大奇, 朱婷婷, 颜明重. 基于改进神经网络的多AUV全覆盖路径规划[J]. 系统仿真学报, 2020, 32(8): 1505-1514.ZHU D Q, ZHU T T, YAN M Z. Multi-AUV complete coverage path planning based on improved neural network[J]. Journal of System Simulation, 2020, 32(8): 1505-1514. [9] FAN J X, WANG Z Y, REN J L, et al. UAV online path planning technology based on deep reinforcement learning[C]//Chinese Automation Congress(CAC). Shanghai, China: IEEE, 2020: 5382-5386. [10] 魏亚丽, 朱大奇, 褚振忠. 基于模型预测控制的水下机器人动态目标跟踪控制[J]. 高技术通讯, 2020, 30(6): 606-614. doi: 10.3772/j.issn.1002-0470.2020.06.008WEI Y L, ZHU D Q, CHU Z Z. Underwater dynamic target tracking control of underwater vehicles based on model predictive control[J]. Chinese High Technology Letters, 2020, 30(6): 606-614. doi: 10.3772/j.issn.1002-0470.2020.06.008 [11] 郭腾飞, 王宏伦, 梁宵. 基于流函数法的无人机航路规划[J]. 战术导弹技术, 2011(5): 27-32.GUO T F, WANG H L, LIANG X. Route planning for UAVs using stream function method[J]. Tactical Missile Technology, 2011(5): 27-32. [12] 曹梦磊, 王宏伦, 梁宵. 采用改进流函数法的无人机航路规划[J]. 电光与控制, 2012, 19(2): 1-4. doi: 10.3969/j.issn.1671-637X.2012.02.001CAO M L, WANG H L, LIANG X. Route planning for UAVs using improved stream function method[J]. Tactical Missile Technology, 2012, 19(2): 1-4. doi: 10.3969/j.issn.1671-637X.2012.02.001 [13] WANG H L, LYU W T, PENG Y, et al. Three-dimensional path planning for unmanned aerial vehicle based on interfe red fluid dynamical system[J]. Chinese Journal of Aerona utics, 2015, 28(1): 229-239. doi: 10.1016/j.cja.2014.12.031 [14] YAO P, WANG H, SU Z, et al. UAV feasible path planning based on disturbed fluid and trajectory propagation[J]. Chinese Journal of Aeronautics. 2015, 28(4): 1163-1177. [15] 姚鹏, 王宏伦. 基于改进流体扰动算法与灰狼优化的无人机三维航路规划[J]. 控制与决策, 2016, 31(4): 701-708.YAO P, WANG H L. Three-dimensional path planning for UAV based on improved interfered fluid dynamical system and grey wolf optimizer[J]. Control and Decision, 2016, 31(4): 701-708. [16] YAO P, ZHAO S. Three-dimensional path planning for AUV based on interfered fluid dynamical system under ocean current[J]. IEEE Access, 2018, 6: 42904-42916. doi: 10.1109/ACCESS.2018.2861468 [17] 王步伟, 潘鹏程. 基于改进鲸鱼优化算法的移动机器人多目标点路径规划[J]. 机器人技术与应用, 2023(6): 14-19. doi: 10.3969/j.issn.1004-6437.2023.06.004WANG B W, PAN P C. Path planning for mobile robots with multiple target points based on an improved whale optimization algorithm[J]. Robot Technique and application, 2023(6): 14-19. doi: 10.3969/j.issn.1004-6437.2023.06.004 [18] 刘树赵, 邹德旋, 罗鸿赟, 等. 改进遗传算法求解旅行商问题[J]. 计算机时代, 2023(5): 66-71.LIU S Z, ZHOU D X, LUO H Y, et al. Improved genetic algorithm to solve traveling salesman problem[J]. Computer Era, 2023(5): 66-71. [19] 易云飞, 林晓东, 蔡永乐. 求解旅行商问题的改进粒子群算法[J]. 计算机工程与设计, 2016, 37(8): 2195-2199.YI Y F, LIN X D, CAI Y L. Improved particle swarm optimization algorithm for solving travelling salesman problem[J]. Computer Engineering and Design, 2016, 37(8): 2195-2199. [20] 闫旭, 叶春明. 混合随机量子鲸鱼优化算法求解TSP问题[J]. 微电子学与计算机, 2018, 35(8): 1-5, 10.YAN X, YE C M. Hybrid stochastic quantum whale optimization algorithm solving travelling salesman problem[J]. Microelectronics & Computer, 2018, 35(8): 1-5, 10. -