• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进鲸鱼优化和流体扰动算法的AUV多目标点路径规划

马裕鸿 庞文 朱大奇

马裕鸿, 庞文, 朱大奇. 基于改进鲸鱼优化和流体扰动算法的AUV多目标点路径规划[J]. 水下无人系统学报, 2025, 33(3): 1-11 doi: 10.11993/j.issn.2096-3920.2025-0054
引用本文: 马裕鸿, 庞文, 朱大奇. 基于改进鲸鱼优化和流体扰动算法的AUV多目标点路径规划[J]. 水下无人系统学报, 2025, 33(3): 1-11 doi: 10.11993/j.issn.2096-3920.2025-0054
MA Yuhong, PANG Wen, ZHU Daqi. Multi-objective point path planning for AUVs based on improved whale optimisation and fluid perturbation algorithms[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0054
Citation: MA Yuhong, PANG Wen, ZHU Daqi. Multi-objective point path planning for AUVs based on improved whale optimisation and fluid perturbation algorithms[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0054

基于改进鲸鱼优化和流体扰动算法的AUV多目标点路径规划

doi: 10.11993/j.issn.2096-3920.2025-0054
基金项目: 国家自然科学基金重点项目(62033009, 24510712400); 国家自然科学基金青年项目(52301378); 国家资助博士后研究人员计划(GZC20231677); 中国博士后科学基金(2023M742372).
详细信息
    作者简介:

    马裕鸿(1998-), 男, 硕士, 主要研究方向为AUV路径规划

    通讯作者:

    庞 文(1988-), 男, 博士, 助理研究员, 主要研究方向为多水下航行器协同控制与运动规划.

Multi-objective point path planning for AUVs based on improved whale optimisation and fluid perturbation algorithms

  • 摘要: 针对在深海环境下, 自主水下航行器(AUV)在多目标点路径规划中效率低、传统鲸鱼优化算法(WOA)易陷入局部最优且难以适应三维避障需求的问题, 提出一种融合流体扰动算法与改进鲸鱼优化算法(IWOA)的协同规划策略。通过混沌映射生成高覆盖率初始解, 结合贪心算法构造局部最优序列, 设计混合种群初始化方法, 解决传统WOA随机初始化导致的解质量差问题。针对旅行商问题(TSP)的离散特性, 提出基于随机插入与局部翻转的离散化位置更新策略, 增强算法逃离局部最优能力。引入精英保留机制, 通过最优个体定向替换最差个体的迭代优化模式, 保障算法全局收敛性。在路径生成阶段, 建立三维流体扰动场模型, 通过障碍物扰动矩阵修正原始流场方向, 实现复杂障碍物环境下的连续避障。仿真结果表明: 文中所提IWOA算法较传统遗传算法和粒子群算法的平均路径长度分别减少15.4%和7.5%, 计算效率提升45.5%和16.8%。

     

  • 图  1  原始流场

    Figure  1.  Original fluid field

    图  2  扰动流场

    Figure  2.  Interfered fluid field

    图  3  多目标路径规划流程图

    Figure  3.  Flow chart of multi-objective path planning

    图  4  WOA算法流程图

    Figure  4.  Flow chart of the WOA

    图  5  IWOA算法伪代码

    Figure  5.  Pseudocode of the IWOA

    图  6  障碍物环境建模与目标点设置

    Figure  6.  Obstacle environment modeling and target points setting

    图  7  规划路径对比图

    Figure  7.  Comparison map of planned paths

    图  8  IWOA规划结果

    Figure  8.  Planning results by IWOA

    图  9  PSO算法规划结果

    Figure  9.  Planning results by PSO algorithm

    图  10  GA规划结果

    Figure  10.  Planning results by GA

    图  11  3种算法平均转弯角度对比

    Figure  11.  Comparison of average turning angles of three algorithms

    图  12  3种算法性能对比

    Figure  12.  Performance comparison of three algorithms

    图  13  3种算法迭代曲线对比

    Figure  13.  Comparison of iteration curves of three algorithms

    图  14  复杂障碍物环境建模与目标点设置

    Figure  14.  Obstacle complex environment modeling and target points setting

    图  15  复杂环境下IWOA规划结果

    Figure  15.  Planning results by IWOA in complex environment

    图  16  复杂环境下PSO算法规划结果

    Figure  16.  Planning results by PSO algorithm in complex environment

    图  17  复杂环境下GA规划结果

    Figure  17.  planning results by GA in complex environment

    图  18  复杂环境下3种算法迭代曲线对比

    Figure  18.  Comparison of iteration curves of three algorithms in complex environment

    图  19  复杂洋流干扰与动态障碍物

    Figure  19.  Current disturbances and dynamic obstacles

    表  1  目标点中心坐标

    Table  1.   Coordinates of the centre of target points

    编号 中心坐标 编号 中心坐标
    1 [40, −90, 20] 5 [100, −135, 20]
    2 [230, −80, 30] 6 [100, 20, 20]
    3 [150, 100, 20] 7 [150, −75, 20]
    4 [20, 100, 10] 8 [200, 25, 20]
    下载: 导出CSV

    表  2  参数设置

    Table  2.   parameter setting

    参数名称 数值
    种群数量 10
    迭代次数 50
    C/(m/s) 10
    $ {\rho _0} $ 1.5
    $ {\sigma _0} $ 0.1
    下载: 导出CSV

    表  3  3种算法访问顺序对比

    Table  3.   Comparison of access orders of three algorithms

    算法访问顺序
    PSO[6, 8, 3, 4, 1, 5, 7, 2]
    GA[1, 5, 7, 8, 2, 6, 3, 4]
    IWOA[4, 6, 3, 8, 2, 7, 5, 1]
    下载: 导出CSV

    表  4  复杂环境下3种算法访问顺序对比

    Table  4.   Comparison of access order of three algorithms in complex environment

    算法访问顺序
    PSO[2 13 7 14 4 8 9 6 3 12 10 11 5 1]
    GA[11 1 5 7 13 2 6 8 3 9 12 14 4 10]
    IWOA[14 4 10 12 9 3 8 6 11 1 5 7 2 13]
    下载: 导出CSV
  • [1] 郭银景, 鲍建康, 刘琦, 等. AUV实时避障算法研究进展[J]. 水下无人系统学报, 2020, 28(4): 351-358, 369. doi: 10.11993/j.issn.2096-3920.2020.04.001

    GUO Y J, BAO J K, LIU Q, et al. Research progress of real-time obstacle avoidance algorithms for unmanned undersea vehicle: A review[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 351-358, 369. doi: 10.11993/j.issn.2096-3920.2020.04.001
    [2] 王磊, 刘晶晶, 齐俊艳, 等. 基于改进人工势场法的AUV全局路径规划[J]. 河南理工大学学报(自然科学版), 2024, 43(1): 132-139.

    WANG L, LIU J J, QI J Y, et al. A global path planning algorithm for AUV based on improved artificial potential fieldmethod[J]. Journal of Henan Polytechnic University (Natural Science), 2024, 43(1): 132-139.
    [3] 赵晓, 王铮, 黄程侃, 等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903-910.

    ZHAO X, WANG Z, HUANG C K, et al. Mobile robot path planning based on an improved A* algorithm[J]. ROBOT, 2018, 40(6): 903-910.
    [4] 杨桂华, 卫嘉乐. 基于改进A*与DWA算法的物流机器人路径规划[J]. 科学技术与工程, 2022, 22(34): 15213-15220. doi: 10.3969/j.issn.1671-1815.2022.34.028

    YANG G H, WEI J L. Logistics robot path planning based on Improved A* and DWA algorithm[J]. Science Technology and Engineering, 2022, 22(34): 15213-15220. doi: 10.3969/j.issn.1671-1815.2022.34.028
    [5] 朱蟋蟋, 孙兵, 朱大奇. 基于改进D*算法的AUV三维动态路径规划[J]. 控制工程, 2021, 28(4): 736-743.

    ZHU X X, SUN B, ZHU D Q. Three-dimensional dynamic path planning of AUV based on improved D* algorithm[J]. Control Engineering of China, 2021, 28(4): 736-743.
    [6] 欧阳子路, 王鸿东, 黄一, 等. 基于改进RRT算法的无人艇编队路径规划技术[J]. 中国舰船研究, 2020, 15(3): 18-24.

    OUYANG Z L, WANG H D, HUANG Y, et al. Path planning technologies for USV formation based on improved RRT[J]. Chinese Journal of Ship Research, 2020, 15(3): 18-24.
    [7] 刘成菊, 韩俊强, 安康. 基于改进RRT算法的RoboCup机器人动态路径规划[J]. 机器人, 2017, 39(1): 8-15.

    LIU C J, HAN J Q, AN K. Dynamic path planning based on an improved RRT algorithm for RoboCup robot[J]. ROBOT, 2017, 39(1): 8-15.
    [8] 朱大奇, 朱婷婷, 颜明重. 基于改进神经网络的多AUV全覆盖路径规划[J]. 系统仿真学报, 2020, 32(8): 1505-1514.

    ZHU D Q, ZHU T T, YAN M Z. Multi-AUV complete coverage path planning based on improved neural network[J]. Journal of System Simulation, 2020, 32(8): 1505-1514.
    [9] FAN J X, WANG Z Y, REN J L, et al. UAV online path planning technology based on deep reinforcement learning[C]//Chinese Automation Congress(CAC). Shanghai, China: IEEE, 2020: 5382-5386.
    [10] 魏亚丽, 朱大奇, 褚振忠. 基于模型预测控制的水下机器人动态目标跟踪控制[J]. 高技术通讯, 2020, 30(6): 606-614. doi: 10.3772/j.issn.1002-0470.2020.06.008

    WEI Y L, ZHU D Q, CHU Z Z. Underwater dynamic target tracking control of underwater vehicles based on model predictive control[J]. Chinese High Technology Letters, 2020, 30(6): 606-614. doi: 10.3772/j.issn.1002-0470.2020.06.008
    [11] 郭腾飞, 王宏伦, 梁宵. 基于流函数法的无人机航路规划[J]. 战术导弹技术, 2011(5): 27-32.

    GUO T F, WANG H L, LIANG X. Route planning for UAVs using stream function method[J]. Tactical Missile Technology, 2011(5): 27-32.
    [12] 曹梦磊, 王宏伦, 梁宵. 采用改进流函数法的无人机航路规划[J]. 电光与控制, 2012, 19(2): 1-4. doi: 10.3969/j.issn.1671-637X.2012.02.001

    CAO M L, WANG H L, LIANG X. Route planning for UAVs using improved stream function method[J]. Tactical Missile Technology, 2012, 19(2): 1-4. doi: 10.3969/j.issn.1671-637X.2012.02.001
    [13] WANG H L, LYU W T, PENG Y, et al. Three-dimensional path planning for unmanned aerial vehicle based on interfe red fluid dynamical system[J]. Chinese Journal of Aerona utics, 2015, 28(1): 229-239. doi: 10.1016/j.cja.2014.12.031
    [14] YAO P, WANG H, SU Z, et al. UAV feasible path planning based on disturbed fluid and trajectory propagation[J]. Chinese Journal of Aeronautics. 2015, 28(4): 1163-1177.
    [15] 姚鹏, 王宏伦. 基于改进流体扰动算法与灰狼优化的无人机三维航路规划[J]. 控制与决策, 2016, 31(4): 701-708.

    YAO P, WANG H L. Three-dimensional path planning for UAV based on improved interfered fluid dynamical system and grey wolf optimizer[J]. Control and Decision, 2016, 31(4): 701-708.
    [16] YAO P, ZHAO S. Three-dimensional path planning for AUV based on interfered fluid dynamical system under ocean current[J]. IEEE Access, 2018, 6: 42904-42916. doi: 10.1109/ACCESS.2018.2861468
    [17] 王步伟, 潘鹏程. 基于改进鲸鱼优化算法的移动机器人多目标点路径规划[J]. 机器人技术与应用, 2023(6): 14-19. doi: 10.3969/j.issn.1004-6437.2023.06.004

    WANG B W, PAN P C. Path planning for mobile robots with multiple target points based on an improved whale optimization algorithm[J]. Robot Technique and application, 2023(6): 14-19. doi: 10.3969/j.issn.1004-6437.2023.06.004
    [18] 刘树赵, 邹德旋, 罗鸿赟, 等. 改进遗传算法求解旅行商问题[J]. 计算机时代, 2023(5): 66-71.

    LIU S Z, ZHOU D X, LUO H Y, et al. Improved genetic algorithm to solve traveling salesman problem[J]. Computer Era, 2023(5): 66-71.
    [19] 易云飞, 林晓东, 蔡永乐. 求解旅行商问题的改进粒子群算法[J]. 计算机工程与设计, 2016, 37(8): 2195-2199.

    YI Y F, LIN X D, CAI Y L. Improved particle swarm optimization algorithm for solving travelling salesman problem[J]. Computer Engineering and Design, 2016, 37(8): 2195-2199.
    [20] 闫旭, 叶春明. 混合随机量子鲸鱼优化算法求解TSP问题[J]. 微电子学与计算机, 2018, 35(8): 1-5, 10.

    YAN X, YE C M. Hybrid stochastic quantum whale optimization algorithm solving travelling salesman problem[J]. Microelectronics & Computer, 2018, 35(8): 1-5, 10.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-06-13

目录

    /

    返回文章
    返回
    服务号
    订阅号