• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维注意力机制的卷积神经网络水声目标识别

张羽飞 赵梅 胡长青 郭政

张羽飞, 赵梅, 胡长青, 等. 基于一维注意力机制的卷积神经网络水声目标识别[J]. 水下无人系统学报, 2025, 33(5): 1-10 doi: 10.11993/j.issn.2096-3920.2025-0053
引用本文: 张羽飞, 赵梅, 胡长青, 等. 基于一维注意力机制的卷积神经网络水声目标识别[J]. 水下无人系统学报, 2025, 33(5): 1-10 doi: 10.11993/j.issn.2096-3920.2025-0053
ZHANG Yufei, ZHAO Mei, HU Changqing, GUO Zheng. Based on One-dimensional Attention Mechanism Convolutional Neural Network for Underwater Acoustic Target Recognition[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0053
Citation: ZHANG Yufei, ZHAO Mei, HU Changqing, GUO Zheng. Based on One-dimensional Attention Mechanism Convolutional Neural Network for Underwater Acoustic Target Recognition[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0053

基于一维注意力机制的卷积神经网络水声目标识别

doi: 10.11993/j.issn.2096-3920.2025-0053
详细信息
    作者简介:

    张羽飞 (2000-), 男, 在读硕士, 主要研究方向为水声目标识别

  • 中图分类号: TB566; TP183

Based on One-dimensional Attention Mechanism Convolutional Neural Network for Underwater Acoustic Target Recognition

  • 摘要: 针对基于深度学习的水声目标识别模型存在网络参数复杂、计算成本高等问题, 提出一种轻量级一维注意力机制卷积神经网络水声目标识别模型。首先, 在特征提取阶段, 选择频谱、梅尔谱、色度、谱对比度和色调特征, 将其重构并融合为一维混合特征。之后, 通过多尺度残差卷积(MRC)以增强混合特征在不同尺度上的特征表示。同时, 引入卷积注意力模块(CBAM), 通过通道注意力和空间注意力模块自适应地调整特征的重要性, 提升模型对关键区域的关注。实验结果表明, 该模型在ShipsEar数据集上的平均识别率达到98.58%, 表现出良好的分类效果, 且运算量大大减少。

     

  • 图  1  CBAM注意力机制模块结构

    Figure  1.  Structure of the CBAM attention mechanism module

    图  2  1D-MRC-CBAM模型

    Figure  2.  1D-MRC-CBAM model

    图  3  卷积块的具体结构

    Figure  3.  The specific structure of a convolutional block

    图  4  识别流程图

    Figure  4.  Identify flow chart

    图  5  ShipsEar数据集训练上的每一轮的训练损失、识别率图

    Figure  5.  Training loss and recognition accuracy plots for each epoch on the ShipsEar dataset

    图  6  测试集输出可视化结果

    Figure  6.  Visualization results of test set outputs

    图  7  移除CBAM模块后模型训练过程

    Figure  7.  Training process of the model without CBAM module

    图  8  卷积核尺寸为1, 3, 5时模训练过程

    Figure  8.  Training process of the model with kernel sizes 1, 3, 5

    图  9  卷积核尺寸为5, 7, 9时模型训练过程

    Figure  9.  Training process of the model with kernel sizes 5, 7, 9

    图  10  1D-MRC-CBAM模型在东海数据上识别结果

    Figure  10.  1D-MRC-CBAM model recognition results on East China Sea data

    表  1  各个模块的输出大小及运算量

    Table  1.   Output size and computational complexity of each module

    模块输入大小输出大小运算量/103
    A_Block(1, 1, 2 000)(1, 16, 500)2.5
    B_Block(1, 1, 2 000)(1, 16, 500)4.1
    C_Block(1, 1, 2 000)(1, 16, 500)5.7
    Concatenation(1, 16, 31)(1, 48, 31)12.3
    D_Block(1, 48, 31)(1, 16, 31)4.3
    Fc1(1, 16, 31)(1, 1, 256)127
    Fc2(1, 1, 256)(1, 1, 16)54.1
    下载: 导出CSV

    表  2  ShipsEar数据集的样本分类

    Table  2.   The dataset of ShipsEar

    分类船只种类合计
    A挖泥船/渔船/贻贝船/拖网渔船/拖船1 875
    B摩托艇/引航船/帆船1 560
    C客船4 270
    D邮轮/滚装船2 455
    E自然噪声1 140
    下载: 导出CSV

    表  3  不同特征重构前与重构后的维度大小

    Table  3.   Dimensionality of features before and after reconstruction

    特征原始大小重构后大小
    FFT1×1 0001×1 000
    MFCC25×201×500
    Chorma12×201×240
    Contrast6×201×120
    Tonnetz6×201×120
    下载: 导出CSV

    表  4  模型参数设置

    Table  4.   Parameterization of the model

    参数选择参数设置
    学习率10−3
    迭代次数100
    优化器Adam
    损失函数交叉熵损失函数
    训练批次64
    下载: 导出CSV

    表  5  不同信噪比下模型的识别率

    Table  5.   Recognition rates of the model under different signal-to-noise ratios

    信噪比/dB A/% B/% C/% D/% E/%
    5 97.01 95.88 97.28 99.18 100
    0 93.40 93.03 95.62 98.74 97.87
    −5 96.39 90.41 93.03 94.67 94.06
    −10 88.06 77.70 85.45 95.45 93.85
    −15 77.90 70.80 78.99 82.37 87.00
    −20 64.24 52.94 74.07 66.80 80.86
    下载: 导出CSV

    表  6  不同输入特征下模型识别率

    Table  6.   Model accuracy for different input features

    输入特征识别率/%
    FFT97.32
    MFCC97.43
    FFT+MFCC98.32
    FMCCT98.58
    下载: 导出CSV

    表  7  不同模型的识别率和参数对比

    Table  7.   Comparison of Recognition Rates and Parameters of Different Methods

    模型输入特征识别率/%参数量/106
    文献[20]Mel频谱96.4%0.47
    文献[21]SSA谱98.6%0.26
    文献[22]STFT谱99.4%5.47
    文献[23]Log-Mel序列98.5%3.5
    文献[24]原始信号99.8%0.61
    1D-MRC-CBAMFMCCT混合特征98.58%0.2
    下载: 导出CSV
  • [1] 徐及, 黄兆琼, 李琛, 颜永红. 深度学习在水下目标被动识别中的应用进展[J]. 信号处理, 2019, 35(9): 1460-1475.

    XU J, HUANG Z Q, LI C, et al. Advances in applications of deep learning in passive underwater target recognition[J]. Signal Processing, 2019, 35(9): 1460-1475.
    [2] 蔡悦斌, 张明之, 史习智, 等. 舰船噪声波形结构特征提取及分类研究[J]. 电子学报, 1999(06): 129-130. doi: 10.3321/j.issn:0372-2112.1999.06.030

    CAI Y B, ZHANG M Z, SHI X Z, et al. Research on extraction and classification of structural features of ship-radiated noise waveform[J]. Acta Electronica Sinica, 1999(06): 129-130. doi: 10.3321/j.issn:0372-2112.1999.06.030
    [3] 葛轶洲, 姚泽, 张歆, 等. 水声目标的MFCC特征提取与分类识别[J]. 计算机仿真, 2024, 41(02): 13-16+33. doi: 10.3969/j.issn.1006-9348.2024.02.003

    GE Y Z, YAO Z, ZHANG X, et al. MFCC feature extraction and classification recognition of underwater acoustic targets[J]. Computer Simulation, 2024, 41(02): 13-16+33. doi: 10.3969/j.issn.1006-9348.2024.02.003
    [4] 谢东日. 水声目标非线性特征提取研究[D]. 厦门: 厦门大学, 2020.
    [5] 倪俊帅, 赵梅, 胡长青. 基于深度学习的舰船辐射噪声多特征融合分类[J]. 声学技术, 2020, 39(03): 366-371.

    NI J S, ZHAO M, HU C Q. Multi-feature fusion classification of ship-radiated noise based on deep learning[J]. Technical Acoustics, 2020, 39(03): 366-371.
    [6] 梁喆, 侯朋, 夏春艳, 等. 融合时频域特征的舰船识别方法及实验研究[J]. 声学技术, 2021, 40(05): 607-613.

    LIANG Z, HOU P, XIA C Y, et al. Ship recognition method and experimental study based on fusion of time-frequency domain features[J]. Technical Acoustics, 2021, 40(05): 607-613.
    [7] 刘承伟, 洪峰, 冯海泓, 胡梦璐. 结合多尺度卷积网络和双端注意力机制的水声目标识别[J]. 声学技术, 2023, 42(02): 161-167.

    LIU C W, HONG F, FENG H H, HU M L. Underwater acoustic target recognition combining multi-scale convolutional networks and dual attention mechanism[J]. Technical Acoustics, 2023, 42(02): 161-167.
    [8] 杨基睿, 鄢社锋, 曾迪, 等. 改进通道注意力机制的时域水声信号识别网络[J]. 信号处理, 2023, 39(6): 1025-1035.

    YANG J R, YAN S F, ZENG D, et al. Time-domain underwater acoustic signal recognition network with improved channel attention mechanism[J]. Signal Processing, 2023, 39(6): 1025-1035.
    [9] LIU Y X, ZHANG B Q, KONG F T, et al. Underwater acoustic classification using wavelet scattering transform and convolutional neural network with limited dataset[J]. Applied Acoustics, 2025, 232: 110564. doi: 10.1016/j.apacoust.2025.110564
    [10] LYU C G, HU X Y, NIU Z H, et al. A light-weight neural network for marine acoustic signal recognition suitable for fiber-optic hydrophones, Expert Systems with Applications, 2024, 235: 121235.
    [11] 杨路飞, 章新华, 吴秉坤, 等. 基于MFCC特征的被动水声目标深度学习分类方法[J]. 舰船科学技术, 2020, 42(19): 129-133. doi: 10.3404/j.issn.1672-7649.2020.10.025

    YANG L F, ZHANG X H, WU B K, et al. Passive underwater acoustic target classification method based on MFCC features and deep learning[J]. Ship Science and Technology, 2020, 42(19): 129-133. doi: 10.3404/j.issn.1672-7649.2020.10.025
    [12] ZHANG S K, TIAN D Y, WANG C, et al. Intelligent recognition of underwater acoustic target noise on underwater glider platform[C]//2018 Chinese Automation Congress(CAC). Piscataway, NJ: IEEE, 2018: 4189-4193.
    [13] 任晨曦, 王黎明, 韩星程, 等. 基于联合神经网络的水声目标识别方法[J]. 舰船科学技术, 2022, 44(1): 136-141. doi: 10.3404/j.issn.1672-7649.2022.01.026

    REN C X, WANG L M, HAN X C, et al. Underwater acoustic target recognition method based on joint neural network[J]. Ship Science and Technology, 2022, 44(1): 136-141. doi: 10.3404/j.issn.1672-7649.2022.01.026
    [14] YANG K, WANG B, FANG Z, et al. An end-to-end underwater acoustic target recognition model based on one-dimensional convolution and transformer[J]. Journal of Marine Science and Engineering. 2024; 12(10): 1793.
    [15] LIU D Y, YANG H Y, HOU W M, et al. A novel underwater acoustic target recognition method based on MFCC and RACNN[J]. Sensors, 2024, 24(1): 273. doi: 10.3390/s24010273
    [16] Yücesoy, E. Gender recognition based on the stacking of different acoustic features[J]. Applied Sciences, 2024, 14(15): 6564. doi: 10.3390/app14156564
    [17] ZHANG S, GAO Y, CAI, J, et al. A novel bird sound recognition method based on multi-feature fusion and a transformer encoder[J]. Sensors, 2023, 23(19): 8099. doi: 10.3390/s23198099
    [18] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[J]. European Conference on Computer Vision. 2018, 1121, 1: 3-19.
    [19] DAVID S D, TORRES G S , ANTONIO C L, et al. ShipsEar: An underwater vessel noise database[J]. Applied Acoustics, 2016, 113: 64-69.
    [20] YANG S, JIN A, ZENG X, et al. Underwater acoustic target recognition based on sub-band concatenated Mel spectrogram and multidomain attention mechanism[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 107983. doi: 10.1016/j.engappai.2024.107983
    [21] NI J, Ji F, LU S, et al. Underwater target recognition method based on singular spectrum analysis and channel attention convolutional neural network[J]. Sensors, 2025, 25: 2573. doi: 10.3390/s25082573
    [22] WANG B, ZHANG W, ZHU Y, et al. An underwater acoustic target recognition method based on AMNet[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
    [23] WANG J Y, QIAN P, CHEN Y X, et al. Adaptive underwater acoustic target recognition based on multi-scale residual and attention mechanism[J]. Digital Signal Processing, 2025, 163: 105193. doi: 10.1016/j.dsp.2025.105193
    [24] NI J, Ji F, LU S, et al. An Auditory Convolutional Neural Network for Underwater Acoustic Target Timbre Feature Extraction and Recognition[J]. Remote Sens. 2024, 16(16), 3074.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-05-18
  • 录用日期:  2025-05-20
  • 网络出版日期:  2025-09-12

目录

    /

    返回文章
    返回
    服务号
    订阅号