• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维注意力机制的卷积神经网络水声目标识别

张羽飞 赵梅 胡长青 郭政

张羽飞, 赵梅, 胡长青, 等. 基于一维注意力机制的卷积神经网络水声目标识别[J]. 水下无人系统学报, 2025, 33(5): 905-913 doi: 10.11993/j.issn.2096-3920.2025-0053
引用本文: 张羽飞, 赵梅, 胡长青, 等. 基于一维注意力机制的卷积神经网络水声目标识别[J]. 水下无人系统学报, 2025, 33(5): 905-913 doi: 10.11993/j.issn.2096-3920.2025-0053
ZHANG Yufei, ZHAO Mei, HU Changqing, GUO Zheng. Underwater Acoustic Target Recognition Based on One-Dimensional Convolutional Neural Network with Attention Mechanism[J]. Journal of Unmanned Undersea Systems, 2025, 33(5): 905-913. doi: 10.11993/j.issn.2096-3920.2025-0053
Citation: ZHANG Yufei, ZHAO Mei, HU Changqing, GUO Zheng. Underwater Acoustic Target Recognition Based on One-Dimensional Convolutional Neural Network with Attention Mechanism[J]. Journal of Unmanned Undersea Systems, 2025, 33(5): 905-913. doi: 10.11993/j.issn.2096-3920.2025-0053

基于一维注意力机制的卷积神经网络水声目标识别

doi: 10.11993/j.issn.2096-3920.2025-0053
详细信息
    作者简介:

    张羽飞 (2000-), 男, 在读硕士, 主要研究方向为水声目标识别

  • 中图分类号: TJ630; U663

Underwater Acoustic Target Recognition Based on One-Dimensional Convolutional Neural Network with Attention Mechanism

  • 摘要: 针对基于深度学习的水声目标识别模型存在网络参数复杂、计算成本高等问题, 提出一种轻量级一维注意力机制卷积神经网络水声目标识别模型。首先, 在特征提取阶段, 选择频谱、梅尔谱、色度、谱对比度和色调特征, 将其重构并融合为一维混合特征; 之后, 通过多尺度残差卷积(MRC)以增强混合特征在不同尺度上的特征表达能力; 同时, 引入卷积注意力模块(CBAM), 通过通道注意力和空间注意力模块自适应地调整特征权重, 提升模型对关键区域的关注。实验结果表明, 该模型在ShipsEar数据集上的平均识别率达到98.58%, 表现出良好的分类效果, 且运算量大大减少。

     

  • 图  1  CBAM模型

    Figure  1.  Model of the CBAM

    图  2  1D-MRC-CBAM模型

    Figure  2.  1D-MRC-CBAM model

    图  3  卷积块的具体结构

    Figure  3.  The specific structure of a convolutional block

    图  4  识别算法流程图

    Figure  4.  Flowchart of the recognition algorithm

    图  5  ShipsEar数据集训练损失与识别率曲线

    Figure  5.  Training loss and recognition rates curves on the ShipsEar dataset

    图  6  测试集输出可视化结果

    Figure  6.  Visualization results of the test set outputs

    图  7  移除CBAM模块后模型训练曲线

    Figure  7.  Training curves of the model without CBAM module

    图  8  不同卷积核尺寸下的验证集损失与识别率

    Figure  8.  Validation loss and recognition rates under different convolutional kernel sizes

    图  9  1D-MRC-CBAM模型在东海数据上的混淆矩阵

    Figure  9.  Confusion matrix of the 1D-MRC-CBAM model on the East China Sea measured data

    表  1  各模块输出大小及运算量

    Table  1.   Output size and computational volumes of each module

    模块 输入大小 输出大小 运算量
    A_Block (1, 1, 2 000) (1, 16, 500) 2.5×103
    B_Block (1, 1, 2 000) (1, 16, 500) 4.1×103
    C_Block (1, 1, 2 000) (1, 16, 500) 5.7×103
    拼接层 (1, 16, 31) (1, 48, 31) 12.3×103
    D_Block (1, 48, 31) (1, 16, 31) 4.3×103
    FC1 (1, 16, 31) (1, 1, 256) 127×103
    FC2 (1, 1, 256) (1, 1, 16) 54.1×103
    下载: 导出CSV

    表  2  ShipsEar数据集样本分类

    Table  2.   Sample classification of the ShipsEar dataset

    分类 船只种类 样本数
    A 挖泥船/渔船/贻贝船/拖网渔船/拖船 1 875
    B 摩托艇/引航船/帆船 1 560
    C 客船 4 270
    D 邮轮/滚装船 2 455
    E 自然噪声 1 140
    下载: 导出CSV

    表  3  不同特征重构前后维度大小

    Table  3.   Dimensional sizes of features before and after reconstruction

    特征原始大小重构后大小
    FFT1×1 0001×1 000
    MFCC25×201×500
    Chorma12×201×240
    Contrast6×201×120
    Tonnetz6×201×120
    下载: 导出CSV

    表  4  模型参数设置

    Table  4.   Parameterization of the model

    参数选择参数设置
    学习率10−3
    迭代次数100
    优化器Adam
    损失函数交叉熵损失函数
    训练批次64
    下载: 导出CSV

    表  5  不同信噪比下模型识别率

    Table  5.   Recognition rates of the model under different signal-to-noise ratios

    信噪比/dB 识别率/%
    A B C D E
    5 97.01 95.88 97.28 99.18 100
    0 93.40 93.03 95.62 98.74 97.87
    −5 96.39 90.41 93.03 94.67 94.06
    −10 88.06 77.70 85.45 95.45 93.85
    −15 77.90 70.80 78.99 82.37 87.00
    −20 64.24 52.94 74.07 66.80 80.86
    下载: 导出CSV

    表  6  不同输入特征下模型识别率

    Table  6.   Model recognition rates with different input features

    输入特征识别率/%
    FFT97.32
    MFCC97.43
    FFT+MFCC98.32
    FMCCT98.58
    下载: 导出CSV

    表  7  不同模型识别率和参数量对比

    Table  7.   Comparison of recognition rates and parameters of different methods

    模型 输入特征 识别率/% 参数量
    文献[20] Mel频谱 96.4 0.47×106
    文献[21] SSA 98.6 0.26×106
    文献[22] STFT谱 99.4 5.47×106
    文献[23] Log-Mel序列 98.5 3.5×106
    文献[24] 原始信号 99.8 0.61×106
    1D-MRC-CBAM FMCCT混合特征 98.58 0.2×106
    下载: 导出CSV
  • [1] 徐及, 黄兆琼, 李琛, 等. 深度学习在水下目标被动识别中的应用进展[J]. 信号处理, 2019, 35(9): 1460-1475.

    XU J, HUANG Z Q, LI C, et al. Advances in applications of deep learning in passive underwater target recognition[J]. Signal Processing, 2019, 35(9): 1460-1475.
    [2] 蔡悦斌, 张明之, 史习智, 等. 舰船噪声波形结构特征提取及分类研究[J]. 电子学报, 1999(6): 129-130. doi: 10.3321/j.issn:0372-2112.1999.06.030

    CAI Y B, ZHANG M Z, SHI X Z, et al. Research on extraction and classification of structural features of ship-radiated noise waveform[J]. Acta Electronica Sinica, 1999(6): 129-130. doi: 10.3321/j.issn:0372-2112.1999.06.030
    [3] 葛轶洲, 姚泽, 张歆, 等. 水声目标的MFCC特征提取与分类识别[J]. 计算机仿真, 2024, 41(2): 13-16, 33. doi: 10.3969/j.issn.1006-9348.2024.02.003

    GE Y Z, YAO Z, ZHANG X, et al. MFCC feature extraction and classification recognition of underwater acoustic targets[J]. Computer Simulation, 2024, 41(2): 13-16, 33. doi: 10.3969/j.issn.1006-9348.2024.02.003
    [4] 谢东日. 水声目标非线性特征提取研究[D]. 厦门: 厦门大学, 2020.
    [5] 倪俊帅, 赵梅, 胡长青. 基于深度学习的舰船辐射噪声多特征融合分类[J]. 声学技术, 2020, 39(3): 366-371.

    NI J S, ZHAO M, HU C Q. Multi-feature fusion classification of ship-radiated noise based on deep learning[J]. Technical Acoustics, 2020, 39(3): 366-371.
    [6] 梁喆, 侯朋, 夏春艳, 等. 融合时频域特征的舰船识别方法及实验研究[J]. 声学技术, 2021, 40(5): 607-613.

    LIANG Z, HOU P, XIA C Y, et al. Ship recognition method and experimental study based on fusion of time-frequency domain features[J]. Technical Acoustics, 2021, 40(5): 607-613.
    [7] 刘承伟, 洪峰, 冯海泓, 等. 结合多尺度卷积网络和双端注意力机制的水声目标识别[J]. 声学技术, 2023, 42(2): 161-167.

    LIU C W, HONG F, FENG H H, et al. Underwater acoustic target recognition combining multi-scale convolutional networks and dual attention mechanism[J]. Technical Acoustics, 2023, 42(2): 161-167.
    [8] 杨基睿, 鄢社锋, 曾迪, 等. 改进通道注意力机制的时域水声信号识别网络[J]. 信号处理, 2023, 39(6): 1025-1035.

    YANG J R, YAN S F, ZENG D, et al. Time-domain underwater acoustic signal recognition network with improved channel attention mechanism[J]. Signal Processing, 2023, 39(6): 1025-1035.
    [9] LIU Y X, ZHANG B Q, KONG F T, et al. Underwater acoustic classification using wavelet scattering transform and convolutional neural network with limited dataset[J]. Applied Acoustics, 2025, 232: 110564. doi: 10.1016/j.apacoust.2025.110564
    [10] LYU C G, HU X Y, NIU Z H, et al. A light-weight neural network for marine acoustic signal recognition suitable for fiber-optic hydrophones[J]. Expert Systems with Applications, 2024, 235: 121235.
    [11] 杨路飞, 章新华, 吴秉坤, 等. 基于MFCC特征的被动水声目标深度学习分类方法[J]. 舰船科学技术, 2020, 42(19): 129-133. doi: 10.3404/j.issn.1672-7649.2020.10.025

    YANG L F, ZHANG X H, WU B K, et al. Passive underwater acoustic target classification method based on MFCC features and deep learning[J]. Ship Science and Technology, 2020, 42(19): 129-133. doi: 10.3404/j.issn.1672-7649.2020.10.025
    [12] ZHANG S K, TIAN D Y, WANG C, et al. Intelligent recognition of underwater acoustic target noise on underwater glider platform[C]//2018 Chinese Automation Congress(CAC). Piscataway, NJ: IEEE, 2018: 4189-4193.
    [13] 任晨曦, 王黎明, 韩星程, 等. 基于联合神经网络的水声目标识别方法[J]. 舰船科学技术, 2022, 44(1): 136-141. doi: 10.3404/j.issn.1672-7649.2022.01.026

    REN C X, WANG L M, HAN X C, et al. Underwater acoustic target recognition method based on joint neural network[J]. Ship Science and Technology, 2022, 44(1): 136-141. doi: 10.3404/j.issn.1672-7649.2022.01.026
    [14] YANG K, WANG B, FANG Z, et al. An end-to-end underwater acoustic target recognition model based on one-dimensional convolution and transformer[J]. Journal of Marine Science and Engineering. 2024; 12(10): 1793.
    [15] LIU D Y, YANG H Y, HOU W M, et al. A novel underwater acoustic target recognition method based on MFCC and RACNN[J]. Sensors, 2024, 24(1): 273. doi: 10.3390/s24010273
    [16] YÜCESOY E. Gender recognition based on the stacking of different acoustic features[J]. Applied Sciences, 2024, 14(15): 6564. doi: 10.3390/app14156564
    [17] ZHANG S, GAO Y, CAI J, et al. A novel bird sound recognition method based on multi-feature fusion and a transformer encoder[J]. Sensors, 2023, 23(19): 8099. doi: 10.3390/s23198099
    [18] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[J]. European Conference on Computer Vision, 2018, 1: 3-19.
    [19] DAVID S D, TORRES G S, ANTONIO C L, et al. ShipsEar: An underwater vessel noise database[J]. Applied Acoustics, 2016, 113: 64-69.
    [20] YANG S, JIN A, ZENG X, et al. Underwater acoustic target recognition based on sub-band concatenated Mel spectrogram and multidomain attention mechanism[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 107983. doi: 10.1016/j.engappai.2024.107983
    [21] NI J, JI F, LU S, et al. Underwater target recognition method based on singular spectrum analysis and channel attention convolutional neural network[J]. Sensors, 2025, 25: 2573. doi: 10.3390/s25082573
    [22] WANG B, ZHANG W, ZHU Y, et al. An underwater acoustic target recognition method based on AMNet[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
    [23] WANG J Y, QIAN P, CHEN Y X, et al. Adaptive underwater acoustic target recognition based on multi-scale residual and attention mechanism[J]. Digital Signal Processing, 2025, 163: 105193. doi: 10.1016/j.dsp.2025.105193
    [24] NI J, JI F, LU S, et al. An auditory convolutional neural network for underwater acoustic target timbre feature extraction and recognition[J]. Remote Sens, 2024, 16: 3074.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  15
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-05-18
  • 录用日期:  2025-05-20
  • 网络出版日期:  2025-09-12

目录

    /

    返回文章
    返回
    服务号
    订阅号