• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚实融合的无人艇集群编队控制验证方法

梁霄 杨成斌 张志浩 刘殿勇 李巍 于长东

梁霄, 杨成斌, 张志浩, 等. 基于虚实融合的无人艇集群编队控制验证方法[J]. 水下无人系统学报, 2025, 33(4): 573-580 doi: 10.11993/j.issn.2096-3920.2025-0050
引用本文: 梁霄, 杨成斌, 张志浩, 等. 基于虚实融合的无人艇集群编队控制验证方法[J]. 水下无人系统学报, 2025, 33(4): 573-580 doi: 10.11993/j.issn.2096-3920.2025-0050
LIANG Xiao, YANG Chengbin, ZHANG Zhihao, LIU Dianyong, LI Wei, YU Changdong. A Verification Method of Formation Control of USV Cluster Based on Virtual-Real Integration[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 573-580. doi: 10.11993/j.issn.2096-3920.2025-0050
Citation: LIANG Xiao, YANG Chengbin, ZHANG Zhihao, LIU Dianyong, LI Wei, YU Changdong. A Verification Method of Formation Control of USV Cluster Based on Virtual-Real Integration[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 573-580. doi: 10.11993/j.issn.2096-3920.2025-0050

基于虚实融合的无人艇集群编队控制验证方法

doi: 10.11993/j.issn.2096-3920.2025-0050
基金项目: 国家自然科学基金项目(52271302); 国家基础科研计划项目(JCKY2022410C012); 辽宁省应用基础研究计划项目(2023JH2/101300198); 大连市科技创新基金项目(2021JJ12GX017); 中央高校基本科研业务费专项资金资助项目(3132025236).
详细信息
    作者简介:

    梁霄:梁 霄(1980-), 男, 博士, 教授, 主要研究方向为海上无人系统技术

    通讯作者:

    于长东(1996-), 男, 博士, 副教授, 主要研究方向为机器学习、无人系统决策与控制

  • 中图分类号: TJ630; U674.82

A Verification Method of Formation Control of USV Cluster Based on Virtual-Real Integration

  • 摘要: 在无人艇(USV)技术研究领域, 自主算法的验证与优化是推动该领域技术发展的关键环节, 对于提升系统可靠性、环境适应性和任务执行效能具有重要的研究价值。随着数字孪生技术的快速发展, 基于虚实融合的验证方法已成为智能控制算法研究的重要技术手段。鉴于此, 文中提出了基于虚实融合的USV集群编队控制验证方法。首先, 提出了面向USV集群的虚实融合五维模型概念, 为试验验证提供理论基础; 其次, 搭建了USV物理实验平台, 可在实际海洋环境进行自主航行与控制; 然后, 采用Unity3D软件搭建虚拟实验环境, 建模海上环境和USV模型, 并与实际物理节点实现了通信。最后, 设计无人自主控制算法, 实现了USV编队控制。实验结果表明, 文中提出的系统方法能够有效用于USV集群自主算法的验证, 为未来海上无人装备智能协同作战和模拟对抗训练提供了新思路和新范式。

     

  • 图  1  基于虚实融合的USV集群编队控制过程示意图

    Figure  1.  Schematic diagram of the formation control process of USV cluster based on virtual-real integration

    图  2  面向USV集群的虚实融合五维模型工作流程图

    Figure  2.  Flow chart of the five-dimensional virtual-real integration model for USV cluster

    图  3  物理实验平台

    Figure  3.  Platform of physical experiment

    图  4  物理USV和虚拟USV

    Figure  4.  Physical USV and virtual USV

    图  5  真实港池场景和重建后的虚拟场景

    Figure  5.  Real harbor scene and reconstructed virtual scene

    图  6  虚实通信网络框图

    Figure  6.  Block diagram of virtual-real communication network

    图  7  同构编队实验初始状态与形成状态对比图

    Figure  7.  Comparison of initial and formation states in homogeneous formation experiment

    图  8  编队保持虚实对比图

    Figure  8.  Virtual-real comparison of formation maintenance

    图  9  编队保持轨迹图

    Figure  9.  Trajectory map of formation maintenance

    图  10  USV集群编队保持速度分布图

    Figure  10.  Velocity distribution of the USV cluster during formation maintenance

    图  11  USV集群编队保持角度分布图

    Figure  11.  Angular distribution of the USV cluster during formation maintenance

  • [1] 宋吉广, 李德隆, 冯亮, 等. 基于感知信息的USV目标环绕跟踪方法[J]. 水下无人系统学报, 2023, 31(5): 696-702. doi: 10.11993/j.issn.2096-3920.202206011

    SONG J G, LI D L, FENG L, et al. Target surround tracking method of USVs based on perception information[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 696-702. doi: 10.11993/j.issn.2096-3920.202206011
    [2] 郭苗, 徐琰锋, 陈铢蕾. 基于博弈论的无人艇探查策略研究[J]. 水下无人系统学报, 2022, 30(6): 754-760. doi: 10.11993/j.issn.2096-3920.2022-0032

    GUO M, XU Y F, CHEN Z L. Research on unmanned surface vehicle detection strategy based on game theory[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 754-760. doi: 10.11993/j.issn.2096-3920.2022-0032
    [3] LI J, ZHANG G, JIANG C, et al. A survey of maritime unmanned search system: Theory, applications and future directions[J]. Ocean Engineering, 2023, 285: 11535.
    [4] 于长东, 刘新阳, 陈聪, 等. 基于多智能体深度强化学习的无人艇集群博弈对抗研究[J]. 水下无人系统学报, 2024, 32(1): 79-86. doi: 10.11993/j.issn.2096-3920.2023-0159

    YU C D, LIU X Y, CHEN C, et al. Research on game confrontation of unmanned surface vehicles swarm based on multi-agent deep reinforcement learning[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 79-86. doi: 10.11993/j.issn.2096-3920.2023-0159
    [5] 梁霄, 陈聪, 刘殿勇, 等. 面向自杀式无人机饱和攻击的海空跨域无人协同反制策略[J]. 水下无人系统学报, 2024, 32(2): 228-236. doi: 10.11993/j.issn.2096-3920.2024-0007

    LIANG X, CHEN C, LIU D Y, et al. Cooperative countermeasure strategy of sea-air cross-domain unmanned platforms for saturation attack of suicide UAVs[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 228-236. doi: 10.11993/j.issn.2096-3920.2024-0007
    [6] 王志洋, 王龙金. 基于改进遗传算法的无人艇集群多任务分配路径规划[J]. 船舶工程, 2024, 46(4): 105-111.

    WANG Z Y, WANG L J. Global path planning for multi-task assignment based on improved genetic algorithm for multi-USV[J]. Ship Engineering, 2024, 46(4): 105-111.
    [7] YANG W, ZHONG W, ZHANG L, et al. A virtual reality approach to the assessment of damage effectiveness of naval artillery ammunition against unmanned surface vessels[J]. IEEE Access, 2023, 11: 93500-93510. doi: 10.1109/ACCESS.2023.3310214
    [8] GAN W H, QU X Q, SONG D L, et al. Multi-USV cooperative chasing strategy based on obstacles assistance and deep reinforcement learning[J]. IEEE Transactions on Automation Science and Engineering, 2023, 21(4): 5895-5910.
    [9] ZHAO Y, HAN F, HAN D, et al. Decision-making for the autonomous navigation of USVs based on deep reinforcement learning under IALA maritime buoyage system[J]. Ocean Engineering, 2022, 266: 112557. doi: 10.1016/j.oceaneng.2022.112557
    [10] ABU-AMARA F, BENSEFIA A, MOHAMMAD H, et al. Robot and virtual reality-based intervention in autism: A comprehensive review[J]. International Journal of Information Technology, 2021, 13(5): 1879-1891. doi: 10.1007/s41870-021-00740-9
    [11] WANG S, LAMBETA M, CHOU P W, et al. Tacto: A fast, flexible, and open-source simulator for high-resolution vision-based tactile sensors[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3930-3937. doi: 10.1109/LRA.2022.3146945
    [12] ACOSTA B, YANG W, POSA M. Validating robotics simulators on real-world impacts[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6471-6478. doi: 10.1109/LRA.2022.3174367
    [13] BRUNO F, BARBIERI L, MANGERUGA M, et al. Underwater augmented reality for improving the diving experience in submerged archaeological sites[J]. Ocean Engineering, 2019, 190: 106487. doi: 10.1016/j.oceaneng.2019.106487
    [14] BUKHARI A C, KIM Y G. A research on an intelligent multipurpose fuzzy semantic enhanced 3D virtual reality simulator for complex maritime missions[J]. Applied Intelligence, 2013, 38: 193-209. doi: 10.1007/s10489-012-0365-9
    [15] NIE Y, LUAN X, GAN W, et al. Design of marine virtual simulation experiment platform based on Unity3D[C]//Global Oceans 2020: Singapore-US Gulf Coast. Biloxi, MS, USA: IEEE, 2020: 1-5.
    [16] LI H, HUANG F, CHEN Z. Virtual-reality-based online simulator design with a virtual simulation system for the docking of unmanned underwater vehicle[J]. Ocean Engineering, 2022, 266: 112780. doi: 10.1016/j.oceaneng.2022.112780
    [17] HU J, YANG X, LOU M, et al. Virtual-reality-based design and implementation with a parallel physical simulation platform for unmanned surface vehicle[C]//2023 International Conference on Cyber-Physical Social Intelligence(ICCSI). Xi’an, China: IEEE, 2023: 262-267.
    [18] 苏星宇. 基于领航-跟随法的无人艇编队控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
  • 加载中
图(11)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  18
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-01
  • 修回日期:  2025-04-26
  • 录用日期:  2025-05-08
  • 网络出版日期:  2025-07-21

目录

    /

    返回文章
    返回
    服务号
    订阅号