• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合自适应滤波-深度学习的舰船辐射噪声线谱增强

蔡婷婷 俞孙泽 赵梅

蔡婷婷, 俞孙泽, 赵梅. 联合自适应滤波-深度学习的舰船辐射噪声线谱增强[J]. 水下无人系统学报, 2025, 33(4): 676-685 doi: 10.11993/j.issn.2096-3920.2025-0040
引用本文: 蔡婷婷, 俞孙泽, 赵梅. 联合自适应滤波-深度学习的舰船辐射噪声线谱增强[J]. 水下无人系统学报, 2025, 33(4): 676-685 doi: 10.11993/j.issn.2096-3920.2025-0040
CAI Tingting, YU Sunze, ZHAO Mei. Ship Radiated Noise Line Spectrum Enhancement Based on Adaptive Filtering-Deep Learning Fusion[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 676-685. doi: 10.11993/j.issn.2096-3920.2025-0040
Citation: CAI Tingting, YU Sunze, ZHAO Mei. Ship Radiated Noise Line Spectrum Enhancement Based on Adaptive Filtering-Deep Learning Fusion[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 676-685. doi: 10.11993/j.issn.2096-3920.2025-0040

联合自适应滤波-深度学习的舰船辐射噪声线谱增强

doi: 10.11993/j.issn.2096-3920.2025-0040
详细信息
    作者简介:

    蔡婷婷(2001-), 女, 在读硕士, 主要研究方向为水下目标线谱增强与检测

  • 中图分类号: TJ6; U674.941

Ship Radiated Noise Line Spectrum Enhancement Based on Adaptive Filtering-Deep Learning Fusion

  • 摘要: 针对复杂水声环境中舰船辐射噪声线谱特征难以辨识的问题, 提出了联合自适应滤波与深度学习(DL)的线谱增强模型。该模型融合双层协同自适应滤波模块与DL模块, 构建多层级特征增强框架。自适应滤波模块结合频域自适应滤波(FDAF)与最大相关熵准则(MCC), 在抑制宽带背景噪声的同时提高了对非平稳噪声的抑制能力。DL模块采用双向长短时记忆网络(BiLSTM)提取线谱的局部时间依赖关系, 结合注意力残差机制增强对弱线谱的关注, 并利用Transformer 编码器捕捉时频域长程关联。该模型充分结合滤波和DL的优点, 既有效抑制噪声, 又提升了对弱线谱的增强效果。仿真验证结果表明, 该方法在整体线谱增强及弱线谱强化方面均优于单一自适应滤波或DL模型。湖试数据验证进一步证实了该方法的有效性。

     

  • 图  1  MCC-FDAF-DL模型技术路线图

    Figure  1.  Roadmap of technical approach for MCC-FDAF-DL model

    图  2  FDAF基本框架图

    Figure  2.  Basic framework of FDAF

    图  3  MCC-FDAF-DL线谱增强模型结构

    Figure  3.  Line spectrum enhanced model structure of MCC-FDAF-DL

    图  4  BiLSTM模型结构

    Figure  4.  Structure of BiLSTM model

    图  5  SAR模块结构

    Figure  5.  Structure of SAR module

    图  6  Transformer编码器结构

    Figure  6.  Structure of Transformer encoder

    图  7  多头自注意力机制结构

    Figure  7.  Structure of multi-head self-attention

    图  8  仿真信号波形图

    Figure  8.  Waveforms of simulation signals

    图  9  SNR为−15 dB时单一-联合方法输出信号LOFAR谱

    Figure  9.  LOFAR spectrum of the output signals of the single and joint method at SNR is −15 dB

    图  10  SNR为−5 dB时单一-联合方法输出信号LOFAR谱

    Figure  10.  LOFAR spectrum of the output signals of the single and joint method at SNR is −5 dB

    图  11  湖试方案

    Figure  11.  Program of the lake test

    图  12  湖试数据输出信号LOFAR谱

    Figure  12.  LOFAR spectrum of the output signals of the lake test data

    图  13  0~200 Hz区间输出信号LOFAR谱

    Figure  13.  LOFAR spectrum of the output signals in the 0-200 Hz range

    图  14  输入信号75 Hz处线谱信号缺失示意图

    Figure  14.  Line spectrum signal missing of input signal at 75 Hz

    表  1  模型参数设置

    Table  1.   Parameter setting of the model

    模块 参数名称 参数值
    自适应滤波模块 滤波器阶数 2 000
    步长 0.000 01
    BiLSTM 隐藏层数 300
    Transformer编码器 编码器层数 2
    全局参数 损失函数 SmoothL1Loss
    优化器 Adam
    迭代次数 300
    学习率 0.001
    下载: 导出CSV

    表  2  仿真线谱信号参数设置

    Table  2.   Parameters setting of the simulated line spectrum signals

    序号 幅值 频率/Hz
    1 3.5 100
    2 2 200
    3 5 500
    4 6 1 500
    下载: 导出CSV

    表  3  消融实验结果

    Table  3.   Results of ablation experiments

    模型 SNR/dB
    −5 −7 −10 −12 −15
    MCC-FDAF-DL 0.957 0.951 0.944 0.938 0.928
    BiLSTM 0.770 0.763 0.757 0.746 0.741
    BiLSTM + SAR 0.845 0.839 0.832 0.825 0.815
    BiLSTM + Transform编码器 0.846 0.839 0.834 0.821 0.808
    下载: 导出CSV
  • [1] AINSLIE M A. Principles of sonar performance modeling[M]. Berlin: Springer, 2010.
    [2] 唐冰钊. 基于熵和模态分解的舰船辐射噪声特征提取方法研究[D]. 西安: 西安理工大学, 2025.
    [3] WIDROW B, GLOVER J R, MCCOOL J M, et al. Adaptive noise cancelling: Principles and applications[J]. Proceedings of the IEEE, 1975, 63(12): 1692-1716. doi: 10.1109/PROC.1975.10036
    [4] 刘辉涛, 丛卫华, 潘翔. 窄带弱信号的线谱检测——相干累加频域批处理自适应线谱增强方法[J]. 浙江大学学报(工学版), 2007(12): 2048-2051.

    LIU H T, CONG W H, PAN X. Line spectral detection of tone weak signal-an adaptive line enhancement technique using coherent addition and frequency domain batch[J]. Journal of Zhejiang University(Engineering Science), 2007(12): 2048-2051.
    [5] HAO Y, CHI C, LIANG G. Sparsity-driven adaptive enhancement of underwater acoustic tonals for passive sonars[J]. The Journal of the Acoustical Society of America, 2020, 147(4): 2192-2204. doi: 10.1121/10.0001017
    [6] 罗斌, 王茂法, 王世闯. 一种高效的弱目标线谱检测算法[J]. 声学技术, 2017, 36(2): 171-176.

    LUO B, WANG M F, WANG S C. A highly efficient weak target line-spectrum detection algorithm[J]. Technical Acoustics, 2017, 36(2): 171-176.
    [7] HAO Q, ZHANG X, WANG Y, et al. A novel rail defect detection method based on undecimated lifting wavelet packet transform and shannon entropy-improved adaptive line enhancer[J]. Journal of Sound and Vibration, 2018, 425: 208-220. doi: 10.1016/j.jsv.2018.04.003
    [8] 王燕, 上官佩熙, 郝宇, 等. 非高斯噪声背景下的目标辐射线谱自适应增强方法[J]. 声学学报, 2024, 49(5): 927-938. doi: 10.12395/0371-0025.2023040

    WANG Y, SHANGGUAN P X, HAO Y, et al. Adaptive enhancer of the target radiated line-spectrum under non-Gaussian noise[J]. Acta Acustica, 2024, 49(5): 927-938. doi: 10.12395/0371-0025.2023040
    [9] 张奇, 笪良龙, 王超, 等. 基于深度学习的水声被动目标识别研究综述[J]. 电子与信息学报, 2023, 45(11): 4190-4202.

    ZHANG Q, DA L L, WANG C, et al. An overview on underwater acoustic passive target recognition based on deep learning[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4190-4202.
    [10] 李悦, 马晓川, 王磊, 等. 非高斯环境下的深度学习脉冲信号去噪与重构[J]. 应用声学, 2021(1): 131-141. doi: 10.11684/j.issn.1000-310X.2021.01.015

    LI Y, MA X C, WANG L, et al. Using deep learning to de-noise and reconstruct pulse signals in non-Gaussian environment[J]. Journal of Applied Acoustics, 2021(1): 131-141. doi: 10.11684/j.issn.1000-310X.2021.01.015
    [11] JU D, CHI C, LI Z, et al. Deep-learning-based line enhancer for passive sonar systems[J]. IET Radar, Sonar & Navigation, 2022, 16(3): 589-601.
    [12] 杨路飞, 章新华, 吴秉坤. 基于长短时记忆网络的被动声纳目标信号LOFAR谱增强研究[J]. 电声技术, 2020, 44(6): 101-103.

    YANG L F, ZHANG X H, WU B K. A study on signal LOFAR spectrum enhancement of passive sonar target based on short and short time memory network[J]. Audio Engineering, 2020, 44(6): 101-103.
    [13] 古天龙, 张清智, 李晶晶. 基于时-频注意力机制网络的水声目标线谱增强[J]. 电子与信息学报, 2024, 46(1): 92-100.

    GU T L, ZHANG Q Z, LI J J. Line spectrum enhancement of underwater acoustic targets based on a time-frequency attention network[J]. Journal of Electronics & Information Technology, 2024, 46(1): 92-100.
    [14] HE T, FENG S, YANG J, et al. Underwater acoustic signal LOFAR spectrogram denoising based on enhanced simulation[J]. Applied Sciences, 2024, 14(23): 10931. doi: 10.3390/app142310931
    [15] LEI L, SHAO S, LIANG L. An evolutionary deep learning model based on EWKM, random forest algorithm, SSA and BiLSTM for building energy consumption prediction[J]. Energy, 2024, 288: 129795. doi: 10.1016/j.energy.2023.129795
    [16] SHERSTINSKY A. Fundamentals of recurrent neural network(RNN) and long short-term memory(LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. doi: 10.1016/j.physd.2019.132306
    [17] WANG Y, QIU S, HU G, et al. Suppressing short time marine ambient noise based on deep complex unet to enhance the vessel radiation signal in LOFAR spectrogram[J]. Journal of Applied Geophysics, 2025, 233: 105611. doi: 10.1016/j.jappgeo.2024.105611
    [18] 焦晨光, 张小波. 一种改进的基于结构相似性的非局部均值图像去噪算法[J]. 智能计算机与应用, 2025(2): 17-23.

    JIAO C G, ZHANG X B. Based on structural similarity improved non-local means image denoising algorithm[J]. Intelligent Computer and Applications, 2025(2): 17-23.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  23
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-03
  • 修回日期:  2025-03-17
  • 录用日期:  2025-03-24
  • 网络出版日期:  2025-07-14

目录

    /

    返回文章
    返回
    服务号
    订阅号