ARV Nonlinear Disturbance Estimation Based on Extended State Observer
-
摘要: 自主/遥控式水下机器人(ARV)在水下路径跟踪任务中易受复杂流场的干扰影响, 传统线性观测器面对流场的非线性扰动表现不佳。文中针对“思源号”ARV的非线性扰动估计问题,提出一种动态高增益扩张观测器方法。首先, 构建了ARV的非线性运动学与动力学模型, 并通过海试路径跟踪试验获得了外部干扰数据。其次, 引入动态增益补偿机制处理非线性系统观测问题, 有效克服了传统方法中利普希茨(Lipschitz)函数系数获取困难与参数整定依赖经验的难点, 并且通过引入性能约束参数解决了动态增益收敛性问题。为验证方法有效性, 开展与传统龙伯格观测器的对比仿真实验。结果表明, 所提观测器在干扰力、干扰力矩、纵荡速度、垂荡速度及艏摇角速度等状态估计中具有更快的收敛速度与更高的稳态精度, 显著提升了复杂扰动下的状态跟踪能力。
-
关键词:
- 自主/遥控式水下机器人 /
- 扰动估计 /
- 扩张状态观测器
Abstract: Autonomous/remotely-operated vehicles(ARVs) are susceptible to complex flow field disturbances during underwater path tracking missions, where traditional linear observers exhibit suboptimal performance in addressing flow field-induced nonlinear disturbances. This paper proposed a dynamic high-gain extended observer method to resolve the nonlinear disturbance estimation challenge for the “Siyuan” ARV. Firstly, a nonlinear kinematic and dynamic model of the ARV was established, with external disturbance data acquired through sea trial path tracking experiments. Secondly, a dynamic gain compensation mechanism was introduced to address nonlinear system observation, effectively overcoming limitations in conventional methods such as the difficulty in determining Lipschitz function coefficient and empirical dependence in parameter tuning. The convergence of dynamic gains was rigorously ensured through the incorporation of performance constraint parameters. To validate the proposed method, comparative simulation experiments were conducted against traditional Luenberger observers. Results demonstrate that the developed observer achieves superior convergence speed and steady-state accuracy in estimating disturbance forces, disturbance moments, surge velocity, heave velocity, and yaw angular velocity. This advancement significantly enhances state tracking capability under complex disturbances. -
表 1 “思源号”ARV基本参数
Table 1. Parameters of Siyuan ARV
参数 数值 符号 质量/kg 3 432 m 重心位置/m (0, 0, 0) $({x_G}, {y_G}, {{\textit{z}}_G})$ 浮心位置/m (0, 0, -0.16) $ ({x_B}, {y_B}, {{\textit{z}}_B}) $ 主体长度/m 2.512 ${L_{{\text{arv}}}}$ 转动惯量/(kg·m2) (2 185.20, 3 806.20, 3 975.20) $({I_x}, {I_y}, {I_{\textit{z}}})$ 惯量积/(kg·m2) (20.40, -239.19, 8.10) $({I_{xy}}, {I_{y{\textit{z}}}}, {I_{{\textit{z}}x}})$ 排水体积/m3 3.415 V 表 2 无因次水动力系数列表
Table 2. Parameters of flexible intercepting net
系数 数值 系数 数值 ${X'_{\dot u}}$ −1.120$ \times $10−2 ${Z'_{\dot q}}$ −2.453$ \times $10−2 ${X'_{uu}}$ −5.000$ \times $10−2 ${Z'_{\dot w}}$ −1.318$ \times $10−1 $Z'_q$ 4.059$ \times $10−2 $Z'_*$ −1.063$ \times $10−2 $Z'_w $ −3.283$ \times $10−1 $Z'_{w\left| w \right|} $ −2.542$ \times $10−1 $Z'_{\left| w \right|} $ 1.090$ \times $10−2 $Z'_{ww} $ 2.112$ \times $10−1 $ N'_{\dot r} $ 1.062$ \times $10−2 $ N'_{v\left| v \right|} $ −2.157$ \times $10−1 $ N'_{r\left| r \right|} $ −1.424$ \times $10−2 $ N'_{\dot v} $ 9.513$ \times $10−3 $ N'_r $ −1.193$ \times $10−2 $ {N_{\left| v \right|r}} $ −2.775$ \times $10−2 $ N'_v $ −5.309$ \times $10−3 -
[1] 周吉祥, 刘慧敏, 陆凯, 等. 深海ARV在海洋资源调查中的应用及展望[J]. 海洋地质前沿, 2024, 40(2): 93-102.ZHOU J X, LIU H M, LU K, et al. Application and prospect of deep-sea ARV in mineral resource investigation[J]. Marine Geology Frontiers, 2024, 40(2): 93-102. [2] 王磊, 刘涛, 杨申申, 等. 深海潜水器ARV关键技术[J]. 火力与指挥控制, 2010, 35(11): 6-8. doi: 10.3969/j.issn.1002-0640.2010.11.002WANG L, LIU T, YANG S S, et al. Key techniques of deep-sea submersible ARV[J]. Fire Control & Command Control, 2010, 35(11): 6-8. doi: 10.3969/j.issn.1002-0640.2010.11.002 [3] AVILA J P J, DONHA D C, ADAMOWSKI J C. Experimental model identification of open-frame underwater vehicles[J]. Ocean Engineering, 2013, 60: 81-94. doi: 10.1016/j.oceaneng.2012.10.007 [4] XU S J, MA Q W, HAN D F. Experimental study on inertial hydrodynamic behaviors of a complex remotely operated vehicle[J]. European Journal of Mechanics-B/Fluids, 2017, 65: 1-9. doi: 10.1016/j.euromechflu.2017.01.013 [5] GU N, WANG D, PENG Z, et al. Disturbance observers and extended state observers for marine vehicles: A survey[J]. Control Engineering Practice, 2022, 123: 105158. doi: 10.1016/j.conengprac.2022.105158 [6] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45. doi: 10.1115/1.3662552 [7] LUENBERGER D. Observers for multivariable systems[J]. IEEE Transactions on Automatic Control, 1966, 11(2): 190-197. doi: 10.1109/TAC.1966.1098323 [8] KHALIL H K, PRALY L. High-gain observers in nonlinear feedback control[J]. International Journal of Robust and Nonlinear Control, 2014, 24(6): 993-1015. doi: 10.1002/rnc.3051 [9] YOUNG K D, UTKIN V I, OZGUNER U. A control engineer’s guide to sliding mode control[J]. IEEE Transactions on Control Systems Technology, 1999, 7(3): 328-342. doi: 10.1109/87.761053 [10] SHEN Y, XIA X. Semi-global finite-time observers for nonlinear systems[J]. Automatica, 2008, 44(12): 3152-3156. doi: 10.1016/j.automatica.2008.05.015 [11] WOLFF T M, LOPEZ V G, MÜLLER M A. Robust data-driven moving horizon estimation for linear discrete-time systems[J]. IEEE Transactions on Automatic Control, 2024, 69(8): 5598-5604. doi: 10.1109/TAC.2024.3371373 [12] AHMED-ALI T, KARAFYLLIS I, LAMNABHI-LAGARRIGUE F. Global exponential sampled-data observers for nonlinear systems with delayed measurements[J]. Systems & Control Letters, 2013, 62(7): 539-549. [13] ZHOU H, ZUO Y, TONG S. Observer-based fuzzy event-triggered consensus fault-tolerant control for nonlinear multiagent systems under switching topologies[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(8): 4660-4670. doi: 10.1109/TFUZZ.2024.3409447 [14] LI X, ZHAO M, GE T. A nonlinear observer for remotely operated vehicles with cable effect in ocean currents[J]. Applied Sciences, 2018, 8(6): 867. doi: 10.3390/app8060867 [15] 吴云凯, 胡大海, 朱志宇, 等. 基于自适应阈值与扩张状态滑模观测器的AUV执行机构故障检测与估计[J]. 控制理论与应用, 2023, 40(7): 1216-1223. doi: 10.7641/CTA.2023.20430WU Y K, HU D H, ZHU Z Y, et al. Adaptive threshold and extended state sliding mode observer based actuator fault detection and estimation for AUV[J]. Control Theory & Applications, 2023, 40(7): 1216-1223. doi: 10.7641/CTA.2023.20430 [16] 王浩亮, 柴亚星, 王丹, 等. 基于事件触发机制的多自主水下航行器协同路径跟踪控制[J]. 自动化学报, 2024, 50(5): 1024-1034.WANG H L, CHAI Y X, WANG D, et al. Event-triggered cooperative path following of multiple autonomous underwater vehicles[J]. Acta Automatica Sinica, 2024, 50(5): 1024-1034. [17] KANG S, RONG Y, CHOU W. Antidisturbance control for AUV trajectory tracking based on fuzzy adaptive extended state observer[J]. Sensors, 2020, 20(24): 7084. doi: 10.3390/s20247084 [18] DING N, TANG Y, JIANG Z, et al. Station-keeping control of autonomous and remotely-operated vehicles for free floating manipulation[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1305. doi: 10.3390/jmse9111305 [19] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. Norway: John Wiley & Sons, 2011. [20] LEI H, LIN W. Universal adaptive control of nonlinear systems with unknown growth rate by output feedback[J]. Automatica, 2006, 42(10): 1783-1789. doi: 10.1016/j.automatica.2006.05.006 -