• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩张状态观测器的ARV非线性扰动估计

刘霄汉 赵晨豪 聂浩淼 项锋 李晨光 赵敏

刘霄汉, 赵晨豪, 聂浩淼, 等. 基于扩张状态观测器的ARV非线性扰动估计[J]. 水下无人系统学报, 2025, 33(3): 433-440 doi: 10.11993/j.issn.2096-3920.2025-0035
引用本文: 刘霄汉, 赵晨豪, 聂浩淼, 等. 基于扩张状态观测器的ARV非线性扰动估计[J]. 水下无人系统学报, 2025, 33(3): 433-440 doi: 10.11993/j.issn.2096-3920.2025-0035
LIU Xiaohan, ZHAO Chenhao, NIE Haomiao, XIANG Feng, LI Chenguang, ZHAO Min. ARV Nonlinear Disturbance Estimation Based on Extended State Observer[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 433-440. doi: 10.11993/j.issn.2096-3920.2025-0035
Citation: LIU Xiaohan, ZHAO Chenhao, NIE Haomiao, XIANG Feng, LI Chenguang, ZHAO Min. ARV Nonlinear Disturbance Estimation Based on Extended State Observer[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 433-440. doi: 10.11993/j.issn.2096-3920.2025-0035

基于扩张状态观测器的ARV非线性扰动估计

doi: 10.11993/j.issn.2096-3920.2025-0035
基金项目: 上海市协同创新科技计划项目(24xtcx00600).
详细信息
    作者简介:

    刘霄汉(1998-), 男, 在读博士, 主要研究方向为水下智能感知技术

    通讯作者:

    赵 敏(1981-), 男, 研究员, 博士生导师, 主要研究方向为潜水器技术、水下装备优化设计以及水下内爆研究.

  • 中图分类号: TJ630.2; U674.941

ARV Nonlinear Disturbance Estimation Based on Extended State Observer

  • 摘要: 自主/遥控式水下机器人(ARV)在水下路径跟踪任务中易受复杂流场的干扰影响, 传统线性观测器面对流场的非线性扰动表现不佳。文中针对“思源号”ARV的非线性扰动估计问题,提出一种动态高增益扩张观测器方法。首先, 构建了ARV的非线性运动学与动力学模型, 并通过海试路径跟踪试验获得了外部干扰数据。其次, 引入动态增益补偿机制处理非线性系统观测问题, 有效克服了传统方法中利普希茨(Lipschitz)函数系数获取困难与参数整定依赖经验的难点, 并且通过引入性能约束参数解决了动态增益收敛性问题。为验证方法有效性, 开展与传统龙伯格观测器的对比仿真实验。结果表明, 所提观测器在干扰力、干扰力矩、纵荡速度、垂荡速度及艏摇角速度等状态估计中具有更快的收敛速度与更高的稳态精度, 显著提升了复杂扰动下的状态跟踪能力。

     

  • 图  1  “思源号”ARV

    Figure  1.  Siyuan ARV

    图  2  ARV运动坐标系示意图

    Figure  2.  Schematic diagram of ARV motion coordinate system

    图  3  ARV推进器布置图

    Figure  3.  layout diagram of ARV thruster

    图  4  “思源号”ARV改造试验

    Figure  4.  ARV retrofit test of Siyuan

    图  5  ARV无光纤状态路径跟踪图

    Figure  5.  Path tracking diagram of ARV in fiber free state

    图  6  ARV控制力合力与合力矩

    Figure  6.  Control force resultant force and resultant torgue of ARV

    图  7  ARV扰动力合力与合力矩

    Figure  7.  Disturbance force resultant force and resultant torguet of ARV

    图  8  动态高增益扩张观测器扰动力和力矩

    Figure  8.  Disturbance force and torque via dynamic high-gain expansion observer

    图  9  龙伯格扩张观测器扰动力和力矩

    Figure  9.  Disturbance force and torque via Longberg extended observer

    图  10  动态高增益扩张观测器航速和增益轨迹

    Figure  10.  Speed estimation and gain trajectory via dynamic high gain expansion observer

    表  1  “思源号”ARV基本参数

    Table  1.   Parameters of Siyuan ARV

    参数 数值 符号
    质量/kg 3 432 m
    重心位置/m (0, 0, 0) $({x_G}, {y_G}, {{\textit{z}}_G})$
    浮心位置/m (0, 0, -0.16) $ ({x_B}, {y_B}, {{\textit{z}}_B}) $
    主体长度/m 2.512 ${L_{{\text{arv}}}}$
    转动惯量/(kg·m2) (2 185.20, 3 806.20, 3 975.20) $({I_x}, {I_y}, {I_{\textit{z}}})$
    惯量积/(kg·m2) (20.40, -239.19, 8.10) $({I_{xy}}, {I_{y{\textit{z}}}}, {I_{{\textit{z}}x}})$
    排水体积/m3 3.415 V
    下载: 导出CSV

    表  2  无因次水动力系数列表

    Table  2.   Parameters of flexible intercepting net

    系数 数值 系数 数值
    ${X'_{\dot u}}$ −1.120$ \times $10−2 ${Z'_{\dot q}}$ −2.453$ \times $10−2
    ${X'_{uu}}$ −5.000$ \times $10−2 ${Z'_{\dot w}}$ −1.318$ \times $10−1
    $Z'_q$ 4.059$ \times $10−2 $Z'_*$ −1.063$ \times $10−2
    $Z'_w $ −3.283$ \times $10−1 $Z'_{w\left| w \right|} $ −2.542$ \times $10−1
    $Z'_{\left| w \right|} $ 1.090$ \times $10−2 $Z'_{ww} $ 2.112$ \times $10−1
    $ N'_{\dot r} $ 1.062$ \times $10−2 $ N'_{v\left| v \right|} $ −2.157$ \times $10−1
    $ N'_{r\left| r \right|} $ −1.424$ \times $10−2 $ N'_{\dot v} $ 9.513$ \times $10−3
    $ N'_r $ −1.193$ \times $10−2 $ {N_{\left| v \right|r}} $ −2.775$ \times $10−2
    $ N'_v $ −5.309$ \times $10−3
    下载: 导出CSV
  • [1] 周吉祥, 刘慧敏, 陆凯, 等. 深海ARV在海洋资源调查中的应用及展望[J]. 海洋地质前沿, 2024, 40(2): 93-102.

    ZHOU J X, LIU H M, LU K, et al. Application and prospect of deep-sea ARV in mineral resource investigation[J]. Marine Geology Frontiers, 2024, 40(2): 93-102.
    [2] 王磊, 刘涛, 杨申申, 等. 深海潜水器ARV关键技术[J]. 火力与指挥控制, 2010, 35(11): 6-8. doi: 10.3969/j.issn.1002-0640.2010.11.002

    WANG L, LIU T, YANG S S, et al. Key techniques of deep-sea submersible ARV[J]. Fire Control & Command Control, 2010, 35(11): 6-8. doi: 10.3969/j.issn.1002-0640.2010.11.002
    [3] AVILA J P J, DONHA D C, ADAMOWSKI J C. Experimental model identification of open-frame underwater vehicles[J]. Ocean Engineering, 2013, 60: 81-94. doi: 10.1016/j.oceaneng.2012.10.007
    [4] XU S J, MA Q W, HAN D F. Experimental study on inertial hydrodynamic behaviors of a complex remotely operated vehicle[J]. European Journal of Mechanics-B/Fluids, 2017, 65: 1-9. doi: 10.1016/j.euromechflu.2017.01.013
    [5] GU N, WANG D, PENG Z, et al. Disturbance observers and extended state observers for marine vehicles: A survey[J]. Control Engineering Practice, 2022, 123: 105158. doi: 10.1016/j.conengprac.2022.105158
    [6] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45. doi: 10.1115/1.3662552
    [7] LUENBERGER D. Observers for multivariable systems[J]. IEEE Transactions on Automatic Control, 1966, 11(2): 190-197. doi: 10.1109/TAC.1966.1098323
    [8] KHALIL H K, PRALY L. High-gain observers in nonlinear feedback control[J]. International Journal of Robust and Nonlinear Control, 2014, 24(6): 993-1015. doi: 10.1002/rnc.3051
    [9] YOUNG K D, UTKIN V I, OZGUNER U. A control engineer’s guide to sliding mode control[J]. IEEE Transactions on Control Systems Technology, 1999, 7(3): 328-342. doi: 10.1109/87.761053
    [10] SHEN Y, XIA X. Semi-global finite-time observers for nonlinear systems[J]. Automatica, 2008, 44(12): 3152-3156. doi: 10.1016/j.automatica.2008.05.015
    [11] WOLFF T M, LOPEZ V G, MÜLLER M A. Robust data-driven moving horizon estimation for linear discrete-time systems[J]. IEEE Transactions on Automatic Control, 2024, 69(8): 5598-5604. doi: 10.1109/TAC.2024.3371373
    [12] AHMED-ALI T, KARAFYLLIS I, LAMNABHI-LAGARRIGUE F. Global exponential sampled-data observers for nonlinear systems with delayed measurements[J]. Systems & Control Letters, 2013, 62(7): 539-549.
    [13] ZHOU H, ZUO Y, TONG S. Observer-based fuzzy event-triggered consensus fault-tolerant control for nonlinear multiagent systems under switching topologies[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(8): 4660-4670. doi: 10.1109/TFUZZ.2024.3409447
    [14] LI X, ZHAO M, GE T. A nonlinear observer for remotely operated vehicles with cable effect in ocean currents[J]. Applied Sciences, 2018, 8(6): 867. doi: 10.3390/app8060867
    [15] 吴云凯, 胡大海, 朱志宇, 等. 基于自适应阈值与扩张状态滑模观测器的AUV执行机构故障检测与估计[J]. 控制理论与应用, 2023, 40(7): 1216-1223. doi: 10.7641/CTA.2023.20430

    WU Y K, HU D H, ZHU Z Y, et al. Adaptive threshold and extended state sliding mode observer based actuator fault detection and estimation for AUV[J]. Control Theory & Applications, 2023, 40(7): 1216-1223. doi: 10.7641/CTA.2023.20430
    [16] 王浩亮, 柴亚星, 王丹, 等. 基于事件触发机制的多自主水下航行器协同路径跟踪控制[J]. 自动化学报, 2024, 50(5): 1024-1034.

    WANG H L, CHAI Y X, WANG D, et al. Event-triggered cooperative path following of multiple autonomous underwater vehicles[J]. Acta Automatica Sinica, 2024, 50(5): 1024-1034.
    [17] KANG S, RONG Y, CHOU W. Antidisturbance control for AUV trajectory tracking based on fuzzy adaptive extended state observer[J]. Sensors, 2020, 20(24): 7084. doi: 10.3390/s20247084
    [18] DING N, TANG Y, JIANG Z, et al. Station-keeping control of autonomous and remotely-operated vehicles for free floating manipulation[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1305. doi: 10.3390/jmse9111305
    [19] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. Norway: John Wiley & Sons, 2011.
    [20] LEI H, LIN W. Universal adaptive control of nonlinear systems with unknown growth rate by output feedback[J]. Automatica, 2006, 42(10): 1783-1789. doi: 10.1016/j.automatica.2006.05.006
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  6
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-27
  • 修回日期:  2025-03-28
  • 录用日期:  2025-04-14
  • 网络出版日期:  2025-05-22

目录

    /

    返回文章
    返回
    服务号
    订阅号