• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IDVD的AUV实时运动规划算法

刘国顺 郭威 兰彦军 符一凡

刘国顺, 郭威, 兰彦军, 等. 基于IDVD的AUV实时运动规划算法[J]. 水下无人系统学报, 2025, 33(3): 473-483 doi: 10.11993/j.issn.2096-3920.2025-0033
引用本文: 刘国顺, 郭威, 兰彦军, 等. 基于IDVD的AUV实时运动规划算法[J]. 水下无人系统学报, 2025, 33(3): 473-483 doi: 10.11993/j.issn.2096-3920.2025-0033
LIU Guoshun, GUO Wei, LAN Yanjun, FU Yifan. A Real-time Motion Planning Algorithm for AUV based on IDVD Method[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 473-483. doi: 10.11993/j.issn.2096-3920.2025-0033
Citation: LIU Guoshun, GUO Wei, LAN Yanjun, FU Yifan. A Real-time Motion Planning Algorithm for AUV based on IDVD Method[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 473-483. doi: 10.11993/j.issn.2096-3920.2025-0033

基于IDVD的AUV实时运动规划算法

doi: 10.11993/j.issn.2096-3920.2025-0033
详细信息
    作者简介:

    刘国顺(1991-), 男, 博士, 工程师, 主要研究方向为水下机器人智能控制

    通讯作者:

    郭威(1971-), 男, 研究员, 博士生导师, 主要研究方向为水下机器人总体及相关控制技术.

  • 中图分类号: TJ630.34; U674.941

A Real-time Motion Planning Algorithm for AUV based on IDVD Method

  • 摘要: 为了提升自主水下航行器(AUV)的智能化程度, 文中提出一种基于逆动力学虚拟域(IDVD)方法的实时运动规划算法, 确保其在未知障碍物环境中安全航行。考虑到AUV自身计算资源有限, 为保证较高的计算效率并实现实时规划,算法采用分层结构框架:首先通过路径规划算法搜索全局安全路径, 然后在前视声呐的感知范围内进行路径优化, 生成安全可行的轨迹,针对欠驱动AUV的运动学约束, 全局路径搜索采用混合A*算法来寻找安全路径,并构建非线性优化问题以提高路径的平滑性和安全性;利用IDVD方法获得可行的AUV速度和加速度轨迹, 并作为参考输入引导AUV航行。为了验证所提出的运动规划方法, 对“海魟二号”AUV进行了仿真和实验,结果表明文中方法能够在未知复杂环境中为AUV实现高效的在线轨迹规划。

     

  • 图  1  运动规划方法框架

    Figure  1.  Framework of motion planning

    图  2  滚动窗口规划机制

    Figure  2.  Receding horizon planning strategy

    图  3  混合A*算法

    Figure  3.  Hybird A* algorithm

    图  4  未知环境规划策略

    Figure  4.  Planning strategy in unknown environment

    图  5  贝塞尔曲线

    Figure  5.  Bezier curve

    图  6  优化前后路径结果对比

    Figure  6.  Comparison of the paths before and after optimization

    图  7  不同方法路径规划结果对比

    Figure  7.  Path comparison with different path planning methods

    图  8  不同方法速度对比

    Figure  8.  Velocity comparison with different methods

    图  9  不同方法收敛速度对比

    Figure  9.  Convergence speed comparison with different methods

    图  10  S型路径

    Figure  10.  S-shaped paths

    图  11  S型轨迹瞬时路径

    Figure  11.  Instantaneous paths of S-shaped trajectory

    图  12  S型轨迹速度曲线

    Figure  12.  Velocity curves in S-shaped trajectory

    图  13  8字型路径

    Figure  13.  8-shaped paths

    图  14  8字型轨迹瞬时路径

    Figure  14.  Instantaneous paths of 8-shaped trajectory

    图  15  8字型轨迹速度曲线

    Figure  15.  Velocity curves in 8-shaped trajectory

    表  1  不同方法计算性能对比

    Table  1.   Computational performance comparison with different methods

    方法航行时间/s平均计算时间/s
    MatlabC++
    文中方法140.61.230.017
    CT153.21.180.020
    GPM134.972.386.320
    下载: 导出CSV

    表  2  规划周期内的计算时间

    Table  2.   Calculation time in planning cycle ms

    轨迹 最小时间 最大时间 平均时间
    S型 24 47 37
    8字型 22 45 36
    下载: 导出CSV
  • [1] GONG Y J, HUANG T, MA Y N, et al. MTrajPlanner: A multiple-trajectory planning algorithm for autonomous underwater vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 3714-3727. doi: 10.1109/TITS.2023.3234937
    [2] ZENG Z, SAMMUT K, LAMMAS A, et al. Efficient path re-planning for AUV operating in spatiotemporal currents[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 79(1): 135-153.
    [3] WILLNERS J S, GONZALEZ-ADELL D, HERNÁNDEZ J D, et al. Online 3-dimensional path planning with kinematic constraints in unknown environments using hybrid A* with tree pruning[J]. Sensors, 2021, 21(4): 1-20. doi: 10.1109/JSEN.2021.3049752
    [4] HERNÁNDEZ J D, VIDAL E, VALLICROSA G, et al. Online path planning for autonomous underwater vehicles in unknown environments[C]//2015 IEEE International Conference on Robotics and Automation. Seattle, USA: IEEE, 2015: 1152-1157.
    [5] YAKIMENKO O A. Direct method for rapid prototyping of near-optimal aircraft trajectories[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(5): 865-875. doi: 10.2514/2.4616
    [6] ZHOU B, GAO F, WANG L, et al. Robust and efficient quadrotor trajectory generation for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3529-3536. doi: 10.1109/LRA.2019.2927938
    [7] LIU S, WATTERSON M, MOHTA K, et al. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1688-1695. doi: 10.1109/LRA.2017.2663526
    [8] MA D, HAO S, MA W, et al. An optimal control-based path planning method for unmanned surface vehicles in complex environments[J]. Ocean Engineering, 2022, 245: 110532. doi: 10.1016/j.oceaneng.2022.110532
    [9] ZHUANG Y, SHARMA S, SUBUDHI B, et al. Efficient collision-free path planning for autonomous underwater vehicles in dynamic environments with a hybrid optimization algorithm[J]. Ocean Engineering, 2016, 127: 190-199. doi: 10.1016/j.oceaneng.2016.09.040
    [10] MAHMOUD ZADEH S, POWERS D M W, SAMMUT K, et al. A novel versatile architecture for autonomous underwater vehicle’s motion planning and task assignment[J]. Soft Computing, 2018, 22(5): 1687-1710. doi: 10.1007/s00500-016-2433-2
    [11] RICHTER C, BRY A, ROY N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments[J]. Springer Tracts in Advanced Robotics, 2016, 114: 649-666.
    [12] KARAMAN S, FRAZZOLI E. Incremental sampling-based algorithms for optimal motion planning[J]. Robotics Science and Systems, 2010, 104(2): 267-274.
    [13] HERNÁNDEZ J D, MOLL M, VIDAL E, et al. Planning feasible and safe paths online for autonomous underwater vehicles in unknown environments[C]//2016 IEEE International Conference on Intelligent Robots and Systems. Daejeon, Korea(South): IEEE, 2016: 1313-1320.
    [14] CARRERAS M, HERNANDEZ J D, VIDAL E, et al. Sparus II AUV-A hovering vehicle for seabed inspection[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 344-355. doi: 10.1109/JOE.2018.2792278
    [15] USENKO V, VON STUMBERG L, PANGERCIC A, et al. Real-time trajectory replanning for MAVs using uniform B-splines and a 3D circular buffer[C]//2017 IEEE International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017: 215-222.
    [16] OLEYNIKOVA H, BURRI M, TAYLOR Z, et al. Continuous-time trajectory optimization for online UAV replanning[C]//2016 IEEE International Conference on Intelligent Robots and Systems. Daejeon, Korea(South): IEEE, 2016: 5332-5339.
    [17] ZHOU X, WANG Z, YE H, et al. EGO-Planner: An ESDF-free gradient-based local planner for quadrotors[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 478-485. doi: 10.1109/LRA.2020.3047728
    [18] YE H, ZHOU X, WANG Z, et al. TGK-planner: An efficient topology guided kinodynamic planner for autonomous quadrotors[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 494-501. doi: 10.1109/LRA.2020.3047798
    [19] SHKEL A M, LUMELSKY V. Classification of the Dubins set[J]. Robotics and Autonomous Systems, 2001, 34(4): 179-202. doi: 10.1016/S0921-8890(00)00127-5
    [20] ZHU Z, SCHMERLING E, PAVONE M. A convex optimization approach to smooth trajectories for motion planning with car-like robots[C]// 2015 Proceedings of the IEEE Conference on Decision and Control. Osaka, Japan: IEEE, 2015: 835-842.
    [21] BOYARKO G, YAKIMENKO O, ROMANO M. Real-Time 6DoF guidance for of spacecraft proximity maneuvering and close approach with a tumbling object[C]//2010 AIAA/AAS Astrodynamics Specialist Conference. Toronto, Ontario, Canada: AIAA, 2010: 7666.
    [22] YAZDANI A M, SAMMUT K, YAKIMENKO O A, et al. IDVD-based trajectory generator for autonomous underwater docking operations[J]. Robotics and Autonomous Systems, 2017, 92: 12-29. doi: 10.1016/j.robot.2017.02.001
    [23] COWLING I D, YAKIMENKO O A, WHIDBORNE J F, et al. Direct method based control system for an autonomous quadrotor[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2010, 60(2): 285-316.
    [24] ALTURBEH H, WHIDBORNE J F. Real-time obstacle collision avoidance for fixed wing aircraft using B-splines[C]//2014 UKACC International Conference on Control. Loughborough, UK: IEEE, 2014: 115-120.
    [25] HEAD J D, ZERNER M C. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries[J]. Chemical Physics Letters, 1985, 122(3): 264-270. doi: 10.1016/0009-2614(85)80574-1
    [26] ANDERSSON J A E, GILLIS J, HORN G, et al. CasADi: A software framework for nonlinear optimization and optimal control[J]. Mathematical Programming Computation, 2019, 11(1): 1-36. doi: 10.1007/s12532-018-0139-4
    [27] GAN W, SU L, CHU Z. Trajectory planning of autonomous underwater vehicles based on Gauss pseudospectral method[J]. Sensors, 2023, 23(4): 57-71.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  6
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-26
  • 修回日期:  2025-03-24
  • 录用日期:  2025-04-17
  • 网络出版日期:  2025-05-26

目录

    /

    返回文章
    返回
    服务号
    订阅号