• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于文献分析的水下多机器人追逃问题研究进展

雷振坤 陈铭治 朱大奇

雷振坤, 陈铭治, 朱大奇. 基于文献分析的水下多机器人追逃问题研究进展[J]. 水下无人系统学报, 2025, 33(3): 484-494 doi: 10.11993/j.issn.2096-3920.2025-0032
引用本文: 雷振坤, 陈铭治, 朱大奇. 基于文献分析的水下多机器人追逃问题研究进展[J]. 水下无人系统学报, 2025, 33(3): 484-494 doi: 10.11993/j.issn.2096-3920.2025-0032
LEI Zhenkun, CHEN Mingzhi, ZHU Daqi. A Literature Analysis-Based Study on Advances in Underwater Multi-Robot Pursuit-Evasion Problems[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 484-494. doi: 10.11993/j.issn.2096-3920.2025-0032
Citation: LEI Zhenkun, CHEN Mingzhi, ZHU Daqi. A Literature Analysis-Based Study on Advances in Underwater Multi-Robot Pursuit-Evasion Problems[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 484-494. doi: 10.11993/j.issn.2096-3920.2025-0032

基于文献分析的水下多机器人追逃问题研究进展

doi: 10.11993/j.issn.2096-3920.2025-0032
基金项目: 国家自然科学基金项目(52371331, 62033009); 人工智能促进科研范式改革赋能学科跃升计划(Z-2024-304-048).
详细信息
    作者简介:

    雷振坤(2001-), 男, 在读硕士, 主要研究方向为水下多机器人追逃等

  • 中图分类号: TJ630; U674.941

A Literature Analysis-Based Study on Advances in Underwater Multi-Robot Pursuit-Evasion Problems

  • 摘要: 研究多机器人追逃问题在水下环境中的应用和挑战, 对提升水下机器人系统自主决策和协同能力具有重要意义。文章通过检索Web of Science Core Collection数据库, 筛选了2004—2024年间的2 200余篇相关文献, 对追逃问题的定义、研究现状、智能追逃方法及其在水下环境中的应用进行了全面分析。重点分析了强化学习、模型预测控制、阿波罗尼斯圆和人工势场4种智能追逃方法的原理、优缺点及适用性。研究发现: 强化学习通过训练优化策略以适应复杂环境, 但训练周期较长; 模型预测控制基于未来状态预测来制定策略, 准确度高但实时性面临挑战; 阿波罗尼斯圆利用几何关系来优化路径; 人工势场法则使用虚拟力场引导机器人。在水下环境中, 机器人追逃博弈面临洋流扰动及通信受限等多重挑战。文中总结了现有方法在水下环境中的应用潜力和存在的问题, 并提出了未来研究方向, 包括开发更高效、适应性更强的智能追逃算法等, 以应对复杂水下环境技术需求, 为水下多机器人系统追逃策略设计提供理论参考。

     

  • 图  1  多追逐者-单逃避者模型

    Figure  1.  Model of multiple chaser-single evader

    图  2  2004—2024年追逃问题总文献量及4种方法文献量对比

    Figure  2.  Comparison of the total literature volume and the literature volume of the four methods on pursuit-evasion problems(2004—2024)

    图  3  国家协作集群

    Figure  3.  Country collaboration clusters

    图  4  机构协作集群

    Figure  4.  Institutional collaboration clusters

    图  5  学者协作集群

    Figure  5.  Scholar collaboration clusters

    图  6  强化学习热点图

    Figure  6.  Hotspot map of reinforcement learning

    图  7  模型预测控制原理

    Figure  7.  Principle of model predictive control

    图  8  阿波罗尼斯圆

    Figure  8.  Apollonius Circle

    图  9  人工势场原理图

    Figure  9.  Schematic diagram of artificial potential field

    图  10  水下追逃相关论文年产出量

    Figure  10.  Annual output of papers related to underwater pursuit-evasion problems

    表  1  4种追逃方法优缺点对比

    Table  1.   Comparison of advantages and disadvantages of four pursuit-evasion methods

    方法优点缺点
    强化学习适应性强、自主学习、全局优化训练周期长、计算资源消耗大、依赖环境建模
    模型预测控制控制准确度高、实时性与灵活性较强计算复杂度高、对目标运动模型依赖性强、目标预测能力有限
    阿波罗尼斯圆几何关系清晰、适用范围广仅适用于匀速直线运动、依赖速度比、复杂环境适应性差
    人工势场算法结构简单、实时性与适应性较强易陷入局部最小值、对参数敏感、动态环境适应性不足
    下载: 导出CSV
  • [1] MU Z, PAN J, ZHOU Z, et al. A survey of the pursuit–evasion problem in swarm intelligence[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(8): 1093-1116.
    [2] KANE S A, ZAMANI M. Falcons pursue prey using visual motion cues: New perspectives from animal-borne cameras[J]. Journal of Experimental Biology, 2014, 217(2): 225-234. doi: 10.1242/jeb.092403
    [3] CHAKRABORTY D, BHUNIA S, DE R. Survival chances of a prey swarm: How the cooperative interaction range affects the outcome[J]. Scientific Reports, 2020, 10(1): 8362. doi: 10.1038/s41598-020-64084-3
    [4] ISAACS R. Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization[M]. Gloucester, MA, USA: Courier Corporation, 1999.
    [5] MURRIETA-CID R, TOVAR B, HUTCHINSON S. A sampling-based motion planning approach to maintain visibility of unpredictable targets[J]. Autonomous Robots, 2005, 19: 285-300. doi: 10.1007/s10514-005-4052-0
    [6] BHATTACHARYA S, HUTCHINSON S. On the existence of Nash equilibrium for a two-player pursuit—evasion game with visibility constraints[J]. The International Journal of Robotics Research, 2010, 29(7): 831-839. doi: 10.1177/0278364909354628
    [7] TANG X, YE D, XIAO Y, et al. Epsilon Nash equilibrium differential game strategy for spacecraft terminal pursuit-evasion under incomplete information[J]. Journal of Astronautics, 2024, 45(1): 63-73. doi: 10.3873/j.issn.1000-1328.2024.01.007
    [8] PACHTER M, D’AZZO J J, PROUD A W. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 246-254. doi: 10.2514/2.4735
    [9] GARCIA E, CASBEER D W, PACHTER M. Design and analysis of state-feedback optimal strategies for the differential game of active defense[J]. IEEE Transactions on Automatic Control, 2018, 64(2): 553-568.
    [10] JIA J, WANG W. Review of reinforcement learning research[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation(YAC). Zhanjiang, China: IEEE, 2020: 186-191.
    [11] KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: A survey[J]. Journal of Artificial Intelligence Research, 1996, 4: 237-285. doi: 10.1613/jair.301
    [12] SUTTON R S, BARTO A G. Reinforcement learning: An introduction[M]. Cambridge, MA, USA: MIT Press, 2018.
    [13] WANG Y K, WANG Y, CUI R X, et al. Game of marine robots: USV pursuit evasion game using online reinforcement learning[C]//2023 IEEE International Conference on Development and Learning(ICDL). Macau, China: IEEE, 2023: 121-126.
    [14] LI Z, CHEN S, ZHOU C, et al. Orbital multi-player pursuit-evasion game with deep reinforcement learning[J]. Journal of the Astronautical Sciences, 2025, 72(1): 1-29.
    [15] QI Q, ZHANG X, GUO X. A deep reinforcement learning approach for the pursuit evasion game in the presence of obstacles[C]//2020 IEEE International Conference on Real-time Computing and Robotics(RCAR). Asahikawa, Japan: IEEE, 2020: 68-73.
    [16] ZHANG R, ZONG Q, ZHANG X, et al. Game of drones: Multi-UAV pursuit-evasion game with online motion planning by deep reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(10): 7900-7909.
    [17] ZHUANG H, GAO P, WU X, et al. Coordination and control in multiagent systems for enhanced pursuit-evasion game performance[J]. Dynamic Games and Applications, 2024: 1-22.
    [18] MORARI M, LEE J H. Model predictive control: Past, present and future[J]. Computers & Chemical Engineering, 1999, 23(4-5): 667-682.
    [19] GARCIA C E, PRETT D M, MORARI M. Model predictive control: Theory and practice—a survey[J]. Automatica, 1989, 25(3): 335-348. doi: 10.1016/0005-1098(89)90002-2
    [20] HUANG D, ZHANG M, ZHAN T, et al. Insensitive mechanism-based nonlinear model predictive guidance for UAVs intercepting maneuvering targets with input constraints[J]. Drones, 2024, 8(11): 608. doi: 10.3390/drones8110608
    [21] QIU T, ZHANG H, WANG J. Nash pursuit strategy for nonzero-sum MPC game via inverse optimal control[C]//2022 13th Asian Control Conference(ASCC). Jeju, Korea: IEEE, 2022: 2354-2359.
    [22] HU P, ZHAO C, PAN Q. A novel method for a pursuit-evasion game based on fuzzy Q-learning and model-predictive control[J]. Drones, 2024, 8(9): 509. doi: 10.3390/drones8090509
    [23] CUI J, LI D, LIU P, et al. Game-model prediction hybrid path planning algorithm for multiple mobile robots in pursuit evasion game[C]//2021 IEEE International Conference on Unmanned Systems(ICUS). Beijing, China: IEEE, 2021: 925-930.
    [24] GISCH D, RIBANDO J M. Apollonius’ problem: A study of solutions and their connections[J]. American Journal of Undergraduate Research, 2004, 3(1): 15-25.
    [25] COXETER H S M. The problem of Apollonius[J]. The American Mathematical Monthly, 1968, 75(1): 5-15. doi: 10.1080/00029890.1968.11970941
    [26] RAMANA M V, KOTHARI M. Pursuit-evasion games of high speed evader[J]. Journal of Intelligent & Robotic Systems, 2017, 85: 293-306.
    [27] DOROTHY M, MAITY D, SHISHIKA D, et al. One Apollonius circle is enough for many pursuit-evasion games[J]. Automatic, 2024, 163: 111587.
    [28] WANG Q, WU K Q, YE J F, et al. Apollonius partitions based pursuit-evasion game strategies by Q-learning approach[C]//2022 41st Chinese Control Conference(CCC). Hefei, China: IEEE, 2022: 4843-4848.
    [29] AL-TALABI A A. Fuzzy reinforcement learning algorithm for the pursuit-evasion differential games with superior evader[C]//2017 International Automatic Control Conference(CACS). Taiwan, China: IEEE, 2017: 1-6.
    [30] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98. doi: 10.1177/027836498600500106
    [31] KUMAR P B, RAWAT H, PARHI D R. Path planning of humanoids based on artificial potential field method in unknown environments[J]. Expert Systems, 2019, 36(2): e12360. doi: 10.1111/exsy.12360
    [32] CHEN M, YANG C, ZHANG X, et al. Pursuit-evasion game of multiple pursuers and evaders with intelligent cooperation and obstacle avoidance in a complex environment[C]//Chinese Conference on Swarm Intelligence and Cooperative Control. Singapore: Springer Nature Singapore, 2023: 222-234.
    [33] DONG J, ZHANG X, JIA X. Strategies of pursuit-evasion game based on improved potential field and differential game theory for mobile robots[C]//2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control. Harbin, China: IEEE, 2012: 1452-1456.
    [34] ZHAO F, HUA Y, ZHENG H, et al. Cooperative target pursuit by multiple fixed-wing UAVs based on deep reinforcement learning and artificial potential field[C]//2023 42nd Chinese Control Conference(CCC). Tianjin, China: IEEE, 2023: 5693-5698.
    [35] ZHOU Z, LIU J, YU J. A survey of underwater multi-robot systems[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 9(1): 1-18.
    [36] SUN Z, SUN H, LI P, et al. Pursuit-evasion problem of unmanned surface vehicles in a complex marine environment[J]. Applied Sciences, 2022, 12(18): 9120. doi: 10.3390/app12189120
    [37] YUH J, WEST M. Underwater robotics[J]. Advanced Robotics, 2001, 15(5): 609-639. doi: 10.1163/156855301317033595
    [38] BOGUE R. Underwater robots: A review of technologies and applications[J]. Industrial Robot: An International Journal, 2015, 42(3): 186-191. doi: 10.1108/IR-01-2015-0010
    [39] BOVIO E, CECCHI D, BARALLI F. Autonomous underwater vehicles for scientific and naval operations[J]. Annual Reviews in Control, 2006, 30(2): 117-130. doi: 10.1016/j.arcontrol.2006.08.003
    [40] SUN X, SUN B, SU Z. Cooperative pursuit-evasion game for multi-AUVs in the ocean current and obstacle environment[C]//International Conference on Intelligent Robotics and Applications. Singapore: Springer Nature Singapore, 2023: 201-213.
    [41] CHU Z, WANG F, LEI T, et al. Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 108-120.
    [42] YANG Y, XIAO Y, LI T. A survey of autonomous underwater vehicle formation: Performance, formation control, and communication capability[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 815-841.
    [43] DANIELIS P, PARZYJEGLA H, ALI M A M, et al. Simulation model for energy consumption and acoustic underwater communication of autonomous underwater vehicles[J]. WMU Journal of Maritime Affairs, 2022, 21(1): 89-107. doi: 10.1007/s13437-021-00253-z
    [44] KELASIDI E, PETTERSEN K Y, GRAVDAHL J T. Energy efficiency of underwater robots[J]. IFAC-PapersOnLine, 2015, 48(16): 152-159. doi: 10.1016/j.ifacol.2015.10.273
    [45] ZEREIK E, BIBULI M, MIŠKOVIĆ N, et al. Challenges and future trends in marine robotics[J]. Annual Reviews in Control, 2018, 46: 350-368. doi: 10.1016/j.arcontrol.2018.10.002
    [46] LEI Z F, LEI X F, WANG N, et al. Present status and challenges of underwater acoustic target recognition technology: A review[J]. Frontiers in Physics, 2022, 10: 1044890. doi: 10.3389/fphy.2022.1044890
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  36
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-26
  • 修回日期:  2025-04-21
  • 录用日期:  2025-05-08
  • 网络出版日期:  2025-06-05

目录

    /

    返回文章
    返回
    服务号
    订阅号