• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于改进势场法的无人艇避障路径规划工程方法

张亚博 王宏瑞 张海燕 肖强 刘宇鑫

张亚博, 王宏瑞, 张海燕, 等. 一种基于改进势场法的无人艇避障路径规划工程方法[J]. 水下无人系统学报, 2025, 33(4): 1-8 doi: 10.11993/j.issn.2096-3920.2025-0030
引用本文: 张亚博, 王宏瑞, 张海燕, 等. 一种基于改进势场法的无人艇避障路径规划工程方法[J]. 水下无人系统学报, 2025, 33(4): 1-8 doi: 10.11993/j.issn.2096-3920.2025-0030
ZHANG Yabo, WANG Hongrui, ZHANG Haiyan, XIAO Qiang, LIU Yuxin. An Engineering Approach for Obstacle Avoidance Path Planning of Unmanned Vessel Based on Optimized Artificial Potential Field[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0030
Citation: ZHANG Yabo, WANG Hongrui, ZHANG Haiyan, XIAO Qiang, LIU Yuxin. An Engineering Approach for Obstacle Avoidance Path Planning of Unmanned Vessel Based on Optimized Artificial Potential Field[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0030

一种基于改进势场法的无人艇避障路径规划工程方法

doi: 10.11993/j.issn.2096-3920.2025-0030
详细信息
    作者简介:

    张亚博

  • 中图分类号: U664.82; TJ630

An Engineering Approach for Obstacle Avoidance Path Planning of Unmanned Vessel Based on Optimized Artificial Potential Field

  • 摘要: 针对无人艇避障局部路径规划问题, 依托人工势场架构, 提出了一种基于经纬度坐标水面态势动态构建的避障局部路径规划方法。首先梳理并整理了经纬度坐标系中的基本运算, 进而推导了传统势函数法的引力及斥力函数形式, 阐述了传统势函数法及其改进方法存在的在工程中虚拟目标点不好确定、被控对象轨迹无法准确预测等问题, 设计了依托水面态势动态构建的改进势函数局部路径规划算法。最后对设计的方法进行了仿真验证及海上试验, 仿真及试验结果表明, 所提出的避障路径规划工程方法能够引导无人艇完成避障任务, 具有较强的可靠性和鲁棒性。

     

  • 图  1  水面态势动态构建示意图

    Figure  1.  Schematic diagram of dynamic construction of water surface situation

    图  2  单障碍物规避示意图

    Figure  2.  Schematic diagram of single obstacle avoidance

    图  3  多障碍物规避示意图

    Figure  3.  Schematic diagram of multi-obstacle avoidance

    图  4  动态避障仿真图

    Figure  4.  Dynamic obstacle avoidance simulation diagram

    图  5  势场合力-里程图

    Figure  5.  Resultant force -mileage chart

    图  6  期望航向-里程图

    Figure  6.  Expected heading-mileage chart

    图  7  避障距离-里程图

    Figure  7.  Obstacle avoidance distance-mileage chart

    图  8  无人艇区域巡逻避障海试效果

    Figure  8.  Sea trial effect of unmanned vessel area patrol obstacle avoidance

    图  9  无人艇航线跟踪避障海试效果

    Figure  9.  Sea trial effect of unmanned vessel route tracking obstacle avoidance

    图  10  无人艇动态目标避障海试效果

    Figure  10.  Sea trial effect of unmanned vessel dynamic target obstacle avoidance

    表  1  无人艇状态信息

    Table  1.   State information of unmanned vessel

    初始位置期望位置$ {R_{{\text{threat}}}} $/m$ {R_{{\text{turn}}}} $/m$ k $
    [113.000 00, 21.000 00][113.030 00, 113.030 00]50304
    下载: 导出CSV

    表  2  原始障碍物信息

    Table  2.   Information of original obstacles

    第1次试验 经度/(°) 113.001 38 113.021 65 113.00212 113.00857 113.021 47 113.014 11 113.022 47 113.009 23 113.010 87 113.014 00
    维度/(°) 21.005 86 21.026 33 21.02768 21.01630 21.025 16 21.016 82 21.015 11 21.004 16 21.023 64 21.014 00
    尺寸/m 64.40 61.64 66.00 69.69 58.66 55.38 62.93 59.51 65.60 110.00
    第2次试验 经度/(°) 113.011 76 113.021 18 113.001 38 113.020 84 113.001 03 113.022 96 113.014 69 113.021 28 113.020 39 113.014 00
    维度/(°) 21.019 66 21.000 95 21.002 91 21.009 51 21.013 16 21.023 85 21.013 36 21.022 64 21.019 65 21.014 00
    尺寸/m 53.42 55.53 66.46 69.00 57.63 53.73 62.92 55.52 53.25 110.00
    第3次试验 经度/(°) 113.011 53 113.008 71 113.024 73 113.010 31 113.027 18 113.007 82 113.012 75 113.005 36 113.017 95 113.014 00
    维度/(°) 21.017 48 21.018 51 21.029 47 21.017 52 21.026 38 21.017 83 21.009 38 21.012 68 21.014 12 21.014 00
    尺寸/m 55.03 55.30 64.60 52.15 66.35 50.45 53.22 51.88 63.91 110.00
    下载: 导出CSV

    表  3  归并后的障碍物信息

    Table  3.   Information of merged obstacles

    第1次试验 经度/(°) 113.009 23 113.010 87 113.001 38 113.021 56 113.002 12 113.022 47 113.012 11
    维度/(°) 21.004 161 21.023 64 21.005 86 21.025 76 21.027 68 21.015 11 21.015 57
    尺寸/m 59.51 65.60 64.40 125.60 66.00 62.93 445.65
    第2次试验经度/(°)113.021 47113.014 18113.011 77113.021 18113.001 39113.020 84113.001 03
    维度/(°)21.021 9021.013 8321.019 6621.000 9521.002 9121.009 5121.013 16
    尺寸/m327.97136.7553.4255.5366.4669.0057.63
    第3次试验经度/(°)113.011 54113.025 97
    维度/(°)21.014 7121.027 92
    尺寸/m733.24279.46
    下载: 导出CSV
  • [1] 熊勇, 余嘉俊, 张加, 等. 无人艇研究进展及发展方向[J]. 船舶工程, 2020, 42(2): 12-19.
    [2] 王秀玲, 尹勇, 赵延杰, 等. 无人艇海上搜救路径规划技术综述[J]. 船舶工程, 2023, 45(4): 50-57.

    WANG X L, YIN Y, ZHAO Y J, et al. Overview of USV maritime search and rescue path planning technology[J]. Ship Engineering, 2023, 45(4): 50-57.
    [3] BAI X, LI B, XU X, et al. A review of current research and advances in unmanned surface vehicles[J]. J. Marine. Sci. Appl, 2022, 21: 47-58. doi: 10.1007/s11804-022-00276-9
    [4] 马勇, 王雯琦, 严新平. 水域无人系统平台自主航行及协同控制研究进展[J]. 无人系统技术, 2022, 5(1): 1-16.

    MA Y, WANG W Q, YAN X P, et al. Research progress on autonomous navigation and cooperative control of water area unmanned system platform[J]. Unmanned Systems Technology, 2022, 5(1): 1-16.
    [5] 徐筱波, 叶锴, 王登峰. 无人水面艇关键技术及军事应用[J]. 广东造船, 2023, 42(4): 35-38.

    XU X B, YE K, WANG D F, et al. Key technologies and military applications of USV[J]. Guangdong Shipbuilding, 2023, 42(4): 35-38.
    [6] XING B, YU M, LIU Z, et al. A review of path planning for unmanned surface vehicles[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1556. doi: 10.3390/jmse11081556
    [7] MAO S, YANG P, GAO D, et al. A motion planning method for unmanned surface vehicle based on improved RRT algorithm[J]. Journal of Marine Science and Engineering, 2023, 11(4): 687. doi: 10.3390/jmse11040687
    [8] 周瑞红, 李彩虹, 张耀玉, 等. 基于改进RRT算法的移动机器人路径规划[J]. 山东理工大学学报(自然科学版), 2024, 38(5): 54-60.

    ZHOU R H, LI C H, ZHANG Y Y, et al. Path planning of mobile robot based on the improved RRT algorithm[J]. Journal of Shandong University of Technology(Natural Science Edition), 2024, 38(5): 54-60.
    [9] 张喜超, 尹勇. 基于改进RRT*算法的无人船路径规划[J]. 中国航海, 2023, 46(01): 143-147+154.

    ZHANG X C, YIN Y. Path planning for unmanned surface vehicle based on improved RRT~* algorithm[J]. Navigation of China, 2023, 46(1): 143-147, 154.
    [10] Dobrevski M, Skočaj D. Dynamic adaptive dynamic window approach[J]. IEEE Transactions on Robotics, 2024, 40: 3068-3081. doi: 10.1109/TRO.2024.3400932
    [11] 李忠坤, 姜媛媛, 刘子厚. 基于蚁群算法融合改进动态窗口法的动态路径规划方法[J]. 佳木斯大学学报(自然科学版), 2024, 42(2): 19-23.

    LI Z K, JIANG Y Y, LIU Z H, et al. Dynamic path planning method based on ant colony algorithm fusion improved dynamic window method[J]. Journal of Jiamusi University(Natural Science Edition), 2024, 42(2): 19-23.
    [12] 王征, 杨洋, 周帅, 等. 基于A*-动态窗口法的无人船动态路径规划算法[J]. 海军工程大学学报, 2024(2): 13-18.
    [13] XIE S R, WU P, PENG Y, et al. The obstacle avoidance planning of USV based on improved artificial potential field[C]//2014 IEEE International Conference on Information and Automation. Hailar, China: IEEE, 2014.
    [14] 李家林, 张建强, 李春来. 基于优化人工势场法的无人艇局部路径规划[J]. 舰船科学技术, 2022, 44(16): 69-73.

    LI J L, ZHANG J Q, LI C L, et al. Local path planning of unmanned boat based on optimized artificial potential field method[J]. Ship Science and Technology, 2022, 44(16): 69-73.
    [15] 邱朋, 汪光, 赵理, 等. 采用改进人工势场法的动态无人车路径规划[J]. 机械设计与制造, 2023(3): 291-296.

    QIU P, WANG G, ZHAO L, et al. Unmanned vehicle path planning based on structured road improved artificial potential field method[J]. Machinery Design & Manufacture, 2023(3): 291-296.
    [16] 刘涛. 基于模糊改进人工势场法的无人船路径规划研究[J]. 舰船科学技术, 2022, 44(3): 63-66.

    LIU T. Research on path planning of unmanned ship based on fuzzy improved artificial potential field method[J]. Ship Science and Technology, 2022, 44(3): 63-66.
    [17] 刘琨, 张永辉, 任佳. 基于改进人工势场法的无人船路径规划算法[J]. 海南大学学报(自然科学版), 2016(2): 99-104.

    LIU K, ZHANG Y H, REN J. Path planning algorithm for unmanned surface vehicle based on an improved artificial potential field method[J]. Natural Science Journal of Hainan University, 2016(2): 99-104.
    [18] 姜文, 崔化超, 戚志刚, 等. 基于多目标粒子群-人工势场法的无人艇局部航路规划[J]. 中国电子科学研究院学报, 2023, 18(9): 814-820.

    JIANG W, CUI H C, QI Z G, et al. Path planning of USV based on MOPSO and APF method[J]. Journal of China Academy of Electronics and Information Technology, 2023, 18(9): 814-820.
    [19] 陈凯翔, 周姝婧, 许强, 等. 基于改进人工势场法的无人船动态路径规划算法研究[J]. 舰船电子对抗, 2023, 46(5): 43-48, 97.

    CHEN K X, ZHOU S J, XU Q, et al. Research into dynamic path planning algorithm of unmanned ship based on improved artificial potential field method[J]. Shipboard Electronic Countermeasure, 2023, 46(5): 43-48, 97.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-24
  • 修回日期:  2025-03-23
  • 录用日期:  2025-03-26
  • 网络出版日期:  2025-07-14

目录

    /

    返回文章
    返回
    服务号
    订阅号