• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于“海豚”深海剖面浮标的CTD数据自适应观测方法

刘楚 侯斐 杨泽荣 周凌霄 朱心科

刘楚, 侯斐, 杨泽荣, 等. 基于“海豚”深海剖面浮标的CTD数据自适应观测方法[J]. 水下无人系统学报, 2025, 33(4): 1-11 doi: 10.11993/j.issn.2096-3920.2025-0025
引用本文: 刘楚, 侯斐, 杨泽荣, 等. 基于“海豚”深海剖面浮标的CTD数据自适应观测方法[J]. 水下无人系统学报, 2025, 33(4): 1-11 doi: 10.11993/j.issn.2096-3920.2025-0025
LIU Chu, HOU Fei, YANG Zerong, ZHOU Lingxiao, ZHU Xinke. Adaptive Observation Methods for Temperature and Salinity Data Based on the Dolphin Deep-sea Profiling Buoy[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0025
Citation: LIU Chu, HOU Fei, YANG Zerong, ZHOU Lingxiao, ZHU Xinke. Adaptive Observation Methods for Temperature and Salinity Data Based on the Dolphin Deep-sea Profiling Buoy[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0025

基于“海豚”深海剖面浮标的CTD数据自适应观测方法

doi: 10.11993/j.issn.2096-3920.2025-0025
详细信息
    作者简介:

    刘楚:刘 楚(1996-), 男, 硕士研究生, 研究方向为智能浮标控制

  • 中图分类号: U674.941; TJ630

Adaptive Observation Methods for Temperature and Salinity Data Based on the Dolphin Deep-sea Profiling Buoy

  • 摘要: 在深海剖面浮标的剖面观测过程中, 出于浮标的低功耗设计需求, 需要采取合适的传感器采集频率以降低数据采集和传输过程中的功耗。基于自主研发的“海豚”深海剖面浮标, 结合搭载外设的具体功耗以及Argo计划中获取的温盐深(CTD)剖面数据进行仿真分析, 提出了一种基于自适应遗传算法的温盐数据采集策略优化模型, 根据相邻剖面数据具有强相关性的特点, 通过分析历史剖面数据特征规划新一轮剖面的采样方案, 在采样过程中根据数据的变化趋势适应性调整采样频率。基于实际数据的仿真分析结果表明, 通过该观测方法获取的剖面数据与实际数据相差较小, 同时相较于预编程的深度分层观测方案进一步降低了剖面浮标的整体功耗。

     

  • 图  1  “海豚”深海剖面浮标

    Figure  1.  Dolphin deep sea profiling float

    图  2  “海豚”深海剖面浮标工作模式

    Figure  2.  Dolphin deep sea profiling float operation mode

    图  3  铱星数据传输过程功耗情况

    Figure  3.  Power consumption during Iridium data transmission process

    图  4  剖面浮标工作海域及漂移轨迹

    Figure  4.  Operating area and drift trajectory of the profiling float

    图  5  剖面浮标月度温盐变化

    Figure  5.  Monthly temperature and salinity variations of profiling float

    图  6  剖面浮标连续剖面温盐数据皮尔逊相关系数

    Figure  6.  Pearson correlation coefficient of continuous profile temperature and salinity data from profiling float

    图  7  不同采样间隔下剖面数据变化情况

    Figure  7.  Variations in profile data under different sampling intervals

    图  8  算法主要流程

    Figure  8.  Main flow of the algorithm

    图  9  温盐剖面优化效果

    Figure  9.  Optimization effect of temperature and salinity profiles

    图  10  温盐剖面数据连续优化误差

    Figure  10.  Continuous optimization error of temperature and salinity profile data

    图  11  温盐剖面连续优化相关性变化

    Figure  11.  Correlation changes in continuous optimization of temperature and salinity profiles

    图  12  功耗优化情况

    Figure  12.  Power consumption optimization

    图  13  温度主动、被动采样方案效果对比

    Figure  13.  Comparison of active and passive temperature sampling schemes

    表  1  电导率传感器功耗情况

    Table  1.   Power consumption of conductivity sensor

    工作阶段工作电流/mA功耗/mWs
    采样34.22410.64
    休眠唤醒3.946.8
    待机7.7593
    休眠0.070.84
    下载: 导出CSV

    表  2  剖面浮标采样策略

    Table  2.   Profiling float sampling strategy

    2902901
    深度区间/m采样间隔/m
    0~102
    10~60010
    600~80020-25-30
    800~6 00050
    下载: 导出CSV

    表  3  连续优化剖面数据量变化情况

    Table  3.   Changes in data volume of continuously optimized profiles

    剖面
    序号
    温度总
    数据量
    温度优化
    效率/%
    盐度总
    数据量
    盐度优化
    效率/%
    1 127 19.1 112 28.7
    2 118 24.8 108 31.2
    3 111 29.3 127 19.1
    4 110 29.9 148 5.7
    5 138 12.1 158 −0.64
    6 131 16.6 135 14.0
    7 120 23.6 114 27.4
    8 124 21.0 108 31.2
    9 115 26.8 108 31.2
    10 113 28.0 117 25.5
    11 108 31.2 108 31.2
    12 109 30.6 126 19.7
    13 111 29.2 121 22.9
    14 115 26.8 113 28.0
    下载: 导出CSV
  • [1] 王波, 李民, 刘世萱, 等. 海洋资料浮标观测技术应用现状及发展趋势[J]. 仪器仪表学报, 2014, 35(11): 2401-14.

    WANG B, LI M, LIU S X, et al. Current status and trend of ocean data buoy observation technology applications[J]. Chinese Journal of Scientific Instrument, 2014, 35(11): 2401-14.
    [2] 陈鹿, 潘彬彬, 曹正良, 等. 自动剖面浮标研究现状及展望[J]. 海洋技术学报, 2017, 36(2): 1-9.

    CHEN L, PAN B B, CAO Z L, et al. Research Status and prospects of automatic profiling floats[J]. Journal of Ocean Technology, 2017, 36(2): 1-9.
    [3] PU Y, SAMSON G, SHI C, et al. Blackghost: An ultra-low-power all-in-one 28 nm CMOS SoC for Internet-of-Things[C]//2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS). Yokohama, Japan: IEEE, 2017: 1-3.
    [4] Shafiee N, Tewari S, Calhoun B, et al. Infrastructure circuits for lifetime improvement of ultra-low power IoT devices[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(9): 2598-610. doi: 10.1109/TCSI.2017.2693181
    [5] ZHU W B, ZHANG Y F, YAZDI N. An ultra-low power switch array of temperature and humidity sensors with direct digital output[C]//2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems. Barcelona, Spain: IEEE, 2013: 108-111.
    [6] LEE C, KIM S. The sampling period estimation based adaptive sampling algorithm for a self-sustainable disaster monitoring system[C]// 2020 European Conference on Networks and Communications. Dubrovnik, Croatia: IEEE, 2020: 165-169.
    [7] CAI W, ZHANG M. Spatiotemporal correlation-based adaptive sampling algorithm for clustered wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2018, 14(8).
    [8] FATTOUM M, JELLALI Z, ATALLAH L N. Adaptive sampling approach exploiting spatio-temporal correlation and residual energy in periodic wireless sensor networks[J]. IEEE Access, 2023, 11: 7670-81. doi: 10.1109/ACCESS.2023.3237024
    [9] SUN Y, YUAN Y, LI X, et al. An adaptive sampling algorithm for target tracking in underwater wireless sensor networks[J]. IEEE Access, 2018, 6: 68324-36. doi: 10.1109/ACCESS.2018.2879536
    [10] ALGABROUN H, HÅKANSSON L. Parametric machine learning-based adaptive sampling algorithm for efficient IoT data collection in environmental monitoring[J]. Journal of Network and Systems Management, 2024, 33: 5.
    [11] HEO S, MAYER P, MAGNO M. Predictive energy-aware adaptive sampling with deep reinforcement learning[C]// 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Glasgow, UK: IEEE, 2022: 1-4.
    [12] GIORDANO M, CORTESI S, MEKIKIS P, et al. Energy-aware adaptive sampling for self-sustainability in resource-constrained IoT devices[C]//In Proceedings of the 11th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems. New York, USA, 2023: 65-71.
    [13] CHEN F, XU S Z, ZHAO Y, et al. An adaptive genetic algorithm of adjusting sensor acquisition frequency[J]. Sensors, 2020, 20: 990. doi: 10.3390/s20040990
    [14] SHU T X, XIA M, CHEN J H, et al. An energy efficient adaptive sampling algorithm in a sensor network for automated water quality monitoring[J]. Sensors, 2017, 17: 2551. doi: 10.3390/s17112551
    [15] ZHOU H, ZENG Z, LIAN L. Adaptive re-planning of AUVs for environmental sampling missions: A fuzzy decision support system based on multi-objective particle swarm optimization[J]. International Journal of Fuzzy Systems, 2017, 20: 650-671.
    [16] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimed Tools Appl, 2021, 80: 8091-126. doi: 10.1007/s11042-020-10139-6
    [17] ALHIJAWI B, AWAJAN A. Genetic algorithms: theory, genetic operators, solutions, and applications[J]. Evol. Intel, 2024, 17: 1245-56. doi: 10.1007/s12065-023-00822-6
    [18] 李昆鹏, 刘腾博, 李文莉. 改进自适应遗传算法求解“货到人”拣选系统订单分批问题[J]. 机械工程学报, 2023, 59(4): 308-317. doi: 10.3901/JME.2023.04.308

    LI K P, LIU T B, LI W L. Improved adaptive genetic algorithm for order batching of “part-to-picker” picking system[J]. Journal of Mechanical Engineering, 2023, 59(4): 308-317. doi: 10.3901/JME.2023.04.308
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-18
  • 修回日期:  2025-03-17
  • 录用日期:  2025-03-18
  • 网络出版日期:  2025-07-01

目录

    /

    返回文章
    返回
    服务号
    订阅号