Low-Power Long-Distance Wireless Communication Technologies for Marine Buoys: A Review
-
摘要: 随着全球海洋开发和利用的不断深入, 海洋浮标作为重要的海洋观测设备, 在海洋环境监测、气象预报及海洋资源开发等领域发挥着关键作用。然而, 海洋浮标通常远离陆地, 面临远距离数据传输和设备功耗限制等挑战。传统的卫星通信技术为远海浮标提供了可靠的通信方式。5G技术的发展则为近海浮标提供了新的可能性。随着物联网(IoT)技术的快速发展, 现代低功耗广域网(LPWAN)技术逐渐成为海洋浮标无线通信的重要选择。新兴的低轨卫星星座(LEO)技术也为海洋浮标提供了全球范围的通信支持, 尤其在超远距离和深海环境下表现优异。文中综述了当前适用于海洋浮标的低功耗无线通信技术, 重点分析了LPWAN技术、5G及低轨卫星通信的应用前景与技术挑战, 提出了未来的发展方向, 以期为推动海洋浮标通信系统的发展提供参考。Abstract: With the advancement of global ocean development and utilization, marine buoys, as key ocean observation devices, play a critical role in marine environment monitoring, weather forecasting, and ocean resource development. However, marine buoys are typically deployed far from land, facing numerous challenges such as long-distance data transmission and equipment power consumption limitations. Traditional satellite communication technologies provide reliable communication for offshore buoys, while the development of 5G technology offers new opportunities for nearshore buoys. With the rapid advancement of the Internet of Things(IoT) technology, modern low-power wide-area network(LPWAN) technologies have gradually become important options for wireless communication in marine buoys. Meanwhile, emerging low Earth orbit(LEO) technologies provide global communication support for marine buoys, particularly excelling in ultra-long-distance and deep-sea environments. This paper reviewed current low-power wireless communication technologies applicable to marine buoys, focusing on the application prospects and technical challenges of LPWAN, 5G, and LEO satellite communication. It also proposed future development directions, aiming to provide valuable references for advancing marine buoy communication systems.
-
Key words:
- ocean buoy /
- wireless communication /
- low-power /
- long-distance communication
-
表 1 基于LPWAN的海洋浮标通信技术对比
Table 1. Comparison of ocean buoy communication technologies based on LPWAN
技术名称 调制方式 编码方式 最大速率 通信距离 频段授权 部署成本 通信功耗 LoRa 啁啾扩频 Hamming 50 kbit/s 远 非授权频段 低 超低 Cat-M1 正交相移键控 Turbo 1 Mbit/s 近 授权频段 较高 低 NB-IoT 正交相移键控 Turbo 250 kbit/s 中等 授权频段 较高 低 Sigfox 超窄带二进制相移键控 卷积码和Turbo 100 bit/s 最远 非授权频段 低 超低 -
[1] 李加林, 沈满洪, 马仁锋, 等. 海洋生态文明建设背景下的海洋资源经济与海洋战略[J]. 自然资源学报, 2022, 37(4): 829-849. doi: 10.31497/zrzyxb.20220401LI J L, SHEN M H, MA R F, et al. Marine resource economy and strategy under the background of marine ecological civilization construction[J]. Journal of Natural Resources, 2022, 37(4): 829-849. doi: 10.31497/zrzyxb.20220401 [2] 蔡鹏, 柳存根, 林忠钦, 等. 海洋强国目标下我国海洋装备关键基础性技术发展战略研究[J]. 中国工程科学, 2024, 26(5): 91-103.CAI P, LIU C G, LIN Z Q, et al. Research on the development strategy of key foundational technologies for China’s marine equipment under the goal of building a strong maritime country[J]. Strategic Study of Chinese Academy of Engineering, 2024, 26(5): 91-103. [3] MALLORY T G, CHUBB A, LAU S. China’s ocean culture and consciousness: Constructing a maritime great power narrative[J]. Marine Policy, 2022, 144: 105229. doi: 10.1016/j.marpol.2022.105229 [4] POTTER J R, BERTEAUX H O, DUCEY A J. Oceanographic buoys and applications[J]. The Encyclopedia of Maritime and Offshore Engineering, 2016: 1-10. [5] 张少伟, 杨文才, 辛永智, 等. 浮标基海洋观测系统研究进展[J]. 科学通报, 2019, 64(28): 2963-2973.ZHANG S W, YANG W C, XIN Y Z, et al. Research progress on buoy-based marine observation systems[J]. Science Bulletin, 2019, 64(28): 2963-2973. [6] 王军成, 厉运周, 杨英东, 等. 海洋资料浮标姿态信息测量技术研究现状及发展趋势[J]. 海洋与湖沼, 2023, 54(5): 1239-1247. doi: 10.11693/hyhz20230300054WANG J C, LI Y Z, YANG Y D, et al. Current status and development trends of attitude measurement technology for oceanographic data buoys[J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1239-1247. doi: 10.11693/hyhz20230300054 [7] 庞茗文, 罗晶晶, 黄圣, 等. 基于多种通信方式的海洋浮标站海洋气象灾害预警系统设计与开发[J]. 气象水文海洋仪器, 2024, 41(1): 111-114. doi: 10.3969/j.issn.1006-009X.2024.01.030PANG M W, LUO J J, HUAN S, et al. Design and development of marine meteorological disaster early warning system for ocean buoy station based on multiple communication modes[J]. Meteorological, Hydrological and Marine Instruments, 2024, 41(1): 111-114. doi: 10.3969/j.issn.1006-009X.2024.01.030 [8] 马云飞. 低功耗海洋监测浮标网络关键技术研究与实现[D]. 济南: 齐鲁工业大学, 2024 [9] 瞿逢重, 来杭亮, 刘建章, 等. 海洋物联网关键技术研究与应用[J]. 电信科学, 2021, 37(7): 25-33. doi: 10.11959/j.issn.1000-0801.2021149 [10] 王波, 李民, 刘世萱, 等. 海洋资料浮标观测技术应用现状及发展趋势[J]. 仪器仪表学报, 2014(11): 2401-2414.WANG B, LI M, LIU S X, et al. Application status and development trends of oceanographic data buoy observation technology[J]. Chinese Journal of Scientific Instrument, 2014(11): 2401-2414. [11] ALQURASHI F S, TRICHILI A, SAEED N, et al. Maritime communications: A survey on enabling technologies, opportunities, and challenges[J]. IEEE Internet of Things Journal, 2022, 10(4): 3525-3547. [12] 肖龙忠, 张松, 刘振吉, 等. 基于短波天波传播的远海跨域浮标通信技术[J]. 水下无人系统学报, 2024, 32(4): 718-723. doi: 10.11993/j.issn.2096-3920.2024-0033XIAO L Z, ZHANG S, LIU Z J, et al. Far-sea cross-domain buoy communication technology based on HF skywave propagation[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 718-723. doi: 10.11993/j.issn.2096-3920.2024-0033 [13] 张嘉纹. 海面宽带短波通信干扰抑制方法研究[D]. 南京: 南京航空航天大学, 2021. [14] BEST S R. On the use of scale brass models in HF shipboard communication antenna design[J]. IEEE Antennas and Propagation Magazine, 2022, 44(2): 12-23. [15] 黄启磊. 数字语音加密的研究及其在海上VHF上的应用[D]. 大连: 大连海事大学, 2006. [16] 杨书魁. 基于VHF频段的近海通信系统概述[J]. 中国水产, 2023(11): 70-71. [17] WU Z, XIONG M, CHENG T, et al. Application prospects and challenges of VHF data exchange system (VDES) in smart fisheries[J]. Journal of Marine Science and Engineering, 2025, 13(2): 250. doi: 10.3390/jmse13020250 [18] 钱帆, 赵启兵, 蒋婷婷, 等. 基于5G通信与北斗短报文的近海小型浮标通信系统设计方法[J]. 兵工自动化, 2024, 43(3): 42-47.QIAN F, ZHAO Q B, JIANG T T, et al. Design method of offshore small buoy communication system based on 5G and BeiDou short message[J]. Ordnance Industry Automation, 2024, 43(3): 42-47. [19] KANG T J, MIN E B, HEO G, et al. The development of buoy type fish finder using LTE communication[J]. Journal of the Korean Society of Fisheries and Ocean Technology, 2022, 58(2): 141-152. doi: 10.3796/KSFOT.2022.58.2.141 [20] 张胜茂, 戴阳, 杨胜龙, 等. 北斗海洋浮标数据接收与控制终端软件[J]. 渔业现代化, 2021, 48(1): 80-86. [21] 马凤强, 吕婷婷, 张浩. 应用于智能浮标的北斗铱星双模通信系统设计[J]. 传感器与微系统, 2021, 40(5): 107-110.MA F Q, LÜ T T, ZHANG H. Design of BeiDou-Iridium hybrid communication system for smart buoys[J]. Journal of Transducer Technology, 2021, 40(5): 107-110. [22] 孙子奇. 基于北斗卫星的大型海洋浮标通信机制探究[J]. 设备管理与维修, 2022(10): 111-113. [23] 曹泽祥. 基于LoRa机制的水面网络技术与海洋水动力监测数据挖掘研究[D]. 厦门: 集美大学, 2020. [24] 周文东. LoRa体制低轨卫星物联网场景下的上行接入性能分析以及终端参数配置方法研究[D]. 南京: 南京邮电大学, 2023.1. [25] MA Y, ZHENG Y, NI X, et al. Long-range low-power LoRa buoy network for marine environmental monitoring[C]//Third International Conference on Digital Signal and Computer Communications(DSCC 2023). Xi’an, China: SPIE, 2023, 12716: 314-321. [26] SA’ADAH N, RAMADHANI A D, RIANANDA D P. Tracking position on GPS smart buoy system using LoRa communication[C]//2023 Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE). Surabaya, Indonesia: IEEE, 2023: 304-309. [27] 吴南旭. ISM频段的LPWAN物理层技术分析[J]. 物联网技术, 2023, 13(3): 57-60. [28] 陈宏铭, 张克非, 陆斌, 等. 物联网低功耗广域网络技术及芯片综述[J]. 中国集成电路, 2022, 31(3): 12-25. doi: 10.3969/j.issn.1681-5289.2022.03.002 [29] PIRAS A, MIRRI S, SOLE M, et al. Implementation of a sea monitoring system based on social Internet of Things[C]//2022 IEEE 19th Annual Consumer Communications & Networking Conference(CCNC). Las Vegas, Nevada, USA: IEEE, 2022: 687-690. [30] CARANDELL M, TOMA D M, ARTERO C, et al. Real-time wave monitoring on coastal areas using LPWAN-based embedded systems[C]//2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Glasgow, UK: IEEE, 2021: 1-6. [31] 赵孙裕, 黄伟康, 孟岩, 等. 基于窄带物联网的海洋能源收集及海洋信息检测的智能信息共享平台[J]. 物联网技术, 2020, 10(2): 7-10. [32] 李昕聪, 余紫扬, 刘璞, 等. 基于 NB-IoT 和无人船巡检的水产养殖场物联网系统研究[J]. 渔业现代化, 2022, 49(1): 72-81. doi: 10.3969/j.issn.1007-9580.2022.01.010 [33] XIE L, XING C, WU Y, et al. Design and realization of marine internet of things environmental parameter acquisition system based on NB-IoT technology[C]//Proceedings of the 2021 9th International Conference on Communications and Broadband Networking. Shanghai, China: ICCBN, 2021: 257-260. [34] GAJEWSKI S, CZAPIEWSKA A, GAJEWSKA M. Evaluation of the use of M2M-type NB-IoT and LTE technologies for maritime communication systems[J]. Polish Maritime Research, 2023, 30: 126-134. [35] KIM D, KIM S, LEE J. Business model framework for IoT: Case studies and strategic implications for IoT businesses[J]. Journal of Information Technology Applications and Management, 2022, 29(1): 1-28. [36] NAM S I, KIM M H. Power save of marine tracker buoy system based on NB-IoT for identification of fishing gear[J]. Journal of Advanced Navigation Technology, 2018, 22(6): 545-550. doi: 10.2478/pomr-2023-0013 [37] 吴晓荣. LTE Cat. 1物联网芯片物理层设计与开发[J]. 科学技术创新, 2024(15): 75-78. doi: 10.3969/j.issn.1673-1328.2024.15.020 [38] LEE S H, KIM T H, KIM H. LTE-Cat. M1 conformity test in sounding rocket communication systems[J]. The Journal of the Convergence on Culture Technology, 2024, 10(4): 589-594. [39] ROOSIPUU P, ANNUS I, KUUSIK A, et al. Empirical evaluation of NB-IoT and CAT-M coverage for underground water system[J]. IEEE Access, 2024. [40] YUE P, AN J, ZHANG J, et al. Low Earth orbit satellite security and reliability: Issues, solutions, and the road ahead[J]. IEEE Communications Surveys & Tutorials, 2023, 25(3): 1604-1652. [41] JUNG S, JEONG S, KANG J, et al. Marine IoT systems with space-air-sea integrated networks: Hybrid LEO and UAV edge computing[J]. IEEE Internet of Things Journal, 2023, 10(23): 20498-20510. doi: 10.1109/JIOT.2023.3287196 [42] 毛华斌, 吴园涛, 殷建平, 等. 海洋环境安全保障技术发展现状和展望[J]. 中国科学院院刊, 2022, 37(7): 870-880.MAO H B, WU Y T, YIN J P, et al. Development status and prospects of marine environmental security assurance technologies[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 870-880. [43] CHEN G, WU S, DENG Y, et al. VLEO satellite constellation design for regional aviation and marine coverage[J]. IEEE Transactions on Network Science and Engineering, 2023, 11(1): 1188-1201. -