• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向联邦学习的水下无人系统安全通信方法

吴佳佳 徐明

吴佳佳, 徐明. 面向联邦学习的水下无人系统安全通信方法[J]. 水下无人系统学报, 2025, 33(2): 1-8 doi: 10.11993/j.issn.2096-3920.2025-0010
引用本文: 吴佳佳, 徐明. 面向联邦学习的水下无人系统安全通信方法[J]. 水下无人系统学报, 2025, 33(2): 1-8 doi: 10.11993/j.issn.2096-3920.2025-0010
WU Jiajia, XU Ming. A Secure Communication Method for Underwater Unmanned Systems Oriented to Federated Learning[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0010
Citation: WU Jiajia, XU Ming. A Secure Communication Method for Underwater Unmanned Systems Oriented to Federated Learning[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0010

面向联邦学习的水下无人系统安全通信方法

doi: 10.11993/j.issn.2096-3920.2025-0010
基金项目: 国家自然科学基金资助项目资助(62172269).
详细信息
    作者简介:

    吴佳佳(1997-), 女, 在读博士, 主要研究方向为水声传感器网络, 信息安全

    通讯作者:

    徐 明(1977-), 男, 博士, 教授, 主要研究方向为水声传感器网络, 信息安全.

  • 中图分类号: U674.941; TJ630.34

A Secure Communication Method for Underwater Unmanned Systems Oriented to Federated Learning

  • 摘要: 针对水下无人系统中的信息泄露问题, 提出了一种面向联邦学习的安全通信方案。考虑水声信道复杂性和带宽限制, 引入了基于Kashin压缩的无偏梯度压缩方法, 通过正交投影和量化操作降低传输梯度维度, 减少通信成本并保持信息完整性。为应对信息泄露, 设计了基于反馈信道的保密方案, 利用归一化水声信道传递矩阵和随机序列生成密钥, 确保窃听方无法解密模型参数。通过结合多目标优化技术, 找到Pareto最优解实现模型精度和安全吞吐量的平衡。仿真结果显示, 与现有方案相比, 所提方案能够有效提升训练精度和安全吞吐量, 同时保持较低延迟。

     

  • 图  1  面向FL的水下无人系统

    Figure  1.  FL-oriented unmanned undersea systems

    图  2  不同信噪比下的安全吞吐量

    Figure  2.  Secure throughput under different SNR

    表  1  仿真参数

    Table  1.   Parameters of simulation

    名称参数
    中心频率/kHz15.5
    带宽/kHz3.75
    合法天线数10
    窃听天线数8
    模型大小/(kbit/s)400
    下载: 导出CSV

    表  2  训练精度

    Table  2.   Training accuracy

    训练轮次(Epoch)文献[7]文献[8]FL-SCUS
    50.7650.7920.851
    100.7960.8350.902
    150.8220.8740.927
    200.8450.9020.951
    250.8620.9270.968
    下载: 导出CSV

    表  3  通信延迟与安全吞吐量

    Table  3.   Communication latency and secure throughput

    对比方法通信延迟/s安全吞吐量/(kbit/s)
    文献[7]89.6232.810
    文献[8]86.5413.022
    FL-SCUS75.2763.525
    下载: 导出CSV
  • [1] ZUO M, TU X, YANG S, et al. Channel distribution and noise characteristics of distributed acoustic sensing underwater communications[J]. IEEE Sensors Journal, 2021, 21(21): 24185-94. doi: 10.1109/JSEN.2021.3115581
    [2] MEECHAM A, ACKER T. Underwater threat detection and tracking using multiple sensors and advanced processing[C]//IEEE International Carnahan Conference on Security Technology. Orlando, USA: IEEE, 2016: 1-7.
    [3] HE Y, HAN G, LI A, et al. A federated deep reinforcement learning-based trust model in underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 5150-61. doi: 10.1109/TMC.2023.3301825
    [4] AFZAL M U, ABDELLATIF A A. Energy-efficient secure federated learning for UAV swarms[C]//International Conference on Energy Conservation and Efficiency. Lahore, Pakistan: IEEE, 2024: 1-5.
    [5] PARK J, YU N Y, LIM H. Privacy-preserving federated learning using homomorphic encryption with different encryption keys[C]//International Conference on Information and Communication Technology Convergence. Jeju Island, Korea: IEEE, 2022: 1869-71.
    [6] XU G, LI H, LIU S, et al. VerifyNet: secure and verifiable federated learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 911-926. doi: 10.1109/TIFS.2019.2929409
    [7] WANG T, LI Y, WU Y, et al. Secrecy driven federated learning via cooperative jamming: An approach of latency minimization[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(4): 1687-1703. doi: 10.1109/TETC.2022.3159282
    [8] YANG X, LIU Z, TANG X, et al. An efficient and multi-private key secure aggregation scheme for federated learning[J]. IEEE Transactions on Services Computing, 2024, 17(5): 1998-2011. doi: 10.1109/TSC.2024.3451165
    [9] ISIAM K Y, AHMAD I, RONG Y, et al. Joint energy and security optimization in underwater wireless communication networks[J]. IEEE Internet of Things Journal, 2024, 11(8): 14282-95. doi: 10.1109/JIOT.2023.3340269
    [10] QARABAQI P, STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701-717. doi: 10.1109/JOE.2013.2278787
    [11] LI H, ZHANG Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 284-302. doi: 10.1109/TEVC.2008.925798
    [12] LIU Y, ZHAO T, SHOU G, et al. Joint optimization of latency and energy consumption via deep reinforcement learning for proximity detection in road networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 19457-68. doi: 10.1109/TITS.2024.3448627
    [13] LinkQuest Inc. Linkquest underwater acoustic modems UWM4000 specifications [EB/OL]. (2006-04-02) [2025-02-24]. https://www.link-quest.com/html/uwm4000.htm.
    [14] 冼敏元, 赵春燕, 何轲, 等. 基于被动时反-随机共振的水下弱信号参数优化检测方法[J]. 水下无人系统学报, 2020, 28(5): 480-496. doi: 10.11993/j.issn.2096-3920.2020.05.002

    XIAN M Y, ZHAO C Y, HE K, et al. Optimal approach of weak underwater acoustic signal detection based on passive time-reversal stochastic resonance[J]. Journal of Unmanned Undersea Systems, 2020, 28(5): 480-496. doi: 10.11993/j.issn.2096-3920.2020.05.002
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 修回日期:  2025-02-24
  • 录用日期:  2025-03-10
  • 网络出版日期:  2025-03-17

目录

    /

    返回文章
    返回
    服务号
    订阅号