• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向动态障碍环境的AUV三维路径规划

陈超洋 唐于特 黄毅 刘智群

陈超洋, 唐于特, 黄毅, 等. 面向动态障碍环境的AUV三维路径规划[J]. 水下无人系统学报, 2025, 33(3): 400-409 doi: 10.11993/j.issn.2096-3920.2025-0008
引用本文: 陈超洋, 唐于特, 黄毅, 等. 面向动态障碍环境的AUV三维路径规划[J]. 水下无人系统学报, 2025, 33(3): 400-409 doi: 10.11993/j.issn.2096-3920.2025-0008
CHEN Chaoyang, TANG Yute, HUANG Yi, LIU Zhiqun. Three-Dimensional Path Planning of AUVs in Dynamic Obstacle Environments[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 400-409. doi: 10.11993/j.issn.2096-3920.2025-0008
Citation: CHEN Chaoyang, TANG Yute, HUANG Yi, LIU Zhiqun. Three-Dimensional Path Planning of AUVs in Dynamic Obstacle Environments[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 400-409. doi: 10.11993/j.issn.2096-3920.2025-0008

面向动态障碍环境的AUV三维路径规划

doi: 10.11993/j.issn.2096-3920.2025-0008
基金项目: 国家自然科学基金优秀青年项目(62222306); 国家自然科学基金青年项目(62403193); 湖南省科技创新计划项目(2024RC9015); 湖南科技大学博士科研启动基金项目(20240190); 湖南省研究生科研创新项目(CX20240872).
详细信息
    作者简介:

    陈超洋(1984-), 男, 博士, 教授, 主要研究方向为智能探测与控制

  • 中图分类号: TJ630; U674

Three-Dimensional Path Planning of AUVs in Dynamic Obstacle Environments

  • 摘要: 传统算法在自主水下航行器(AUV)面临的高维空间和动态障碍物环境中存在计算负担大、精度不足问题。针对复杂三维环境下动态障碍物对AUV路径规划的挑战, 文中提出一种基于改进的双重深度Q网络(DDQN)的AUV三维路径规划方法。通过网络结构优化和高效奖励函数设计, 显著提升了AUV路径规划效率和精度。此外, 引入了动态障碍物运动轨迹建模, 采用辛格模型和卡尔曼滤波算法实现障碍物状态的精确预测, 增强了AUV的动态避障能力。同时, 采用Basis样条函数对路径进行平滑处理, 改善了AUV航行路径的连续性与稳定性。仿真与实验结果表明, 所提方法在复杂动态环境下能够有效避免碰撞, 实时规划出安全且高效的航行路径。相比传统方法, DDQN算法在路径长度、避障成功率及计算效率方面均展现出明显优势, 有效解决了动态障碍环境中AUV的三维路径规划问题。

     

  • 图  1  圆柱形AUV示意图

    Figure  1.  Schematic diagram of cylindrical AUV

    图  2  三维空间动态障碍物轨迹预测图

    Figure  2.  Trajectory prediction diagram of three-dimensional space dynamic obstacle

    图  3  XYZ方向位置预测偏差分布图

    Figure  3.  Prediction deviation distribution map of position in XYZ directions

    图  4  动态避障试验结果

    Figure  4.  Test results of dynamic obstacle avoidance

    图  5  AUV三维路径规划试验结果

    Figure  5.  Experimental results of 3D path planning for AUV

    表  1  避障试验参数

    Table  1.   Test parameters of obstacle avoidance

    试验
    编号
    障碍物
    类型
    障碍物位置
    /运动方向
    AUV起始
    位置
    AUV目标
    位置
    AUV初始
    航向角/(°)
    1 静态 (15, 15, 15) (0, 0, 0) (30, 30, 30) 45
    2 动态 横向穿越 (0, 0, 0) (30, 30, 30) 45
    3 动态 同向运动 (0, 0, 0) (30, 30, 30) 45
    4 动态 相对运动 (0, 0, 0) (30, 30, 30) 45
    下载: 导出CSV

    表  2  DDQN网络超参数

    Table  2.   Network hyperparameters of DDQN

    参数 符号
    经验回放池容量 nm 5000
    折扣因子 $\lambda $ 0.98
    探索率 $\varepsilon $ 1.0
    最小探索率 ${\varepsilon _{\min }}$ 0.05
    探索率衰减 $ {\varepsilon _{{\mathrm{decay}}}} $ 0.99
    步数惩罚因子 k1 0.6
    洋流放缩因子 k2 0.4
    下载: 导出CSV

    表  3  不同算法试验结果比较

    Table  3.   Comparison of experimental results for different algorithms

    算法 最小路径/m 平均路径/m 航行时间/s
    PRM 1945.82 2104.50 4195.67
    RRT 2298.57 2421.77 4623.94
    APF 1899.48 1959.98 3941.80
    DDQN 1789.98 1859.98 3545.93
    下载: 导出CSV
  • [1] 高剑, 张福斌. 无人水下航行器控制系统[M]. 西安: 西北工业大学出版社, 2018: 1-9.
    [2] 徐玉如, 李彭超. 水下机器人发展趋势[J]. 自然杂志, 2011, 33(3): 125-132, 2.
    [3] 钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(4): 215-225.

    ZHONG H W. Review and prospect of equipment and techniques for unmanned undersea vehicle in foreign countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 215-225.
    [4] 潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(1): 44-51.

    PAN G, SONG B W, HUANG Q G, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 44-51.
    [5] SHOJAEI K, CHATRAEI A. Robust platoon control of underactuated autonomous underwater vehicles subjected to nonlinearities, uncertainties and range and angle constraints[J]. Applied Ocean Research, 2021, 110: 102594. doi: 10.1016/j.apor.2021.102594
    [6] AGHABABA M P, AMROLLAHI M H, BORJKHANI M. Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles[J]. Journal of Marine Science and Application, 2012, 11: 378-386. doi: 10.1007/s11804-012-1146-x
    [7] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1: 269-271.
    [8] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. doi: 10.1109/TSSC.1968.300136
    [9] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98. doi: 10.1177/027836498600500106
    [10] DORIGO M, MANIEZZO V, COLORNI A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 1996, 26(1): 29-41. doi: 10.1109/3477.484436
    [11] LAVALLE S. Rapidly-exploring random trees: A new tool for path planning: Technical Report TR 98-11[R]. Iowa State: Iowa State University, Department of Computer Science, 1998.
    [12] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580. doi: 10.1109/70.508439
    [13] 朱蟋蟋, 孙兵, 朱大奇. 基于改进D*算法的AUV三维动态路径规划[J]. 控制工程, 2021, 28(4): 736-743.
    [14] ZHUANG Y, HUANG H, SHARMA S, et al. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment[J]. ISA Transactions, 2019, 94: 174-186. doi: 10.1016/j.isatra.2019.04.012
    [15] YAO X, WANG F, YUAN C, et al. Path planning for autonomous underwater vehicles based on interval optimization in uncertain flow fields[J]. Ocean Engineering, 2021, 234: 108675. doi: 10.1016/j.oceaneng.2021.108675
    [16] YAN Z, ZHANG J, TANG J. Path planning for autonomous underwater vehicle based on an enhanced water wave optimization algorithm[J]. Mathematics and Computers in Simulation, 2021, 181: 192-241. doi: 10.1016/j.matcom.2020.09.019
    [17] BHOPALE P, KAZI F, SINGH N. Reinforcement learning based obstacle avoidance for autonomous underwater vehicle[J]. Journal of Marine Science and Application, 2019, 18: 228-238. doi: 10.1007/s11804-019-00089-3
    [18] CARLUCHO I, DE PAULA M, WANG S, et al. Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning[J]. Robotics and Autonomous Systems, 2018, 107: 71-86. doi: 10.1016/j.robot.2018.05.016
    [19] LI Y, WANG Y, YU W, et al. Multiple autonomous underwater vehicle cooperative localization in anchor-free environments[J]. IEEE Journal of Oceanic Engineering, 2019, 44(4): 895-911. doi: 10.1109/JOE.2019.2935516
    [20] WOO J, KIM N. Collision avoidance for an unmanned surface vehicle using deep reinforcement learning[J]. Ocean Engineering, 2020, 199: 107001. doi: 10.1016/j.oceaneng.2020.107001
    [21] CHE G, YU Z. Neural-network estimators based fault-tolerant tracking control for AUV via ADP with rudders faults and ocean current disturbance[J]. Neurocomputing, 2020, 411: 442-454. doi: 10.1016/j.neucom.2020.06.026
    [22] WU X, CHEN H, CHEN C, et al. The autonomous navigation and obstacle avoidance for USVs with ANOA deep reinforcement learning method[J]. Knowledge-Based Systems, 2020, 196: 105201. doi: 10.1016/j.knosys.2019.105201
    [23] CHU Z, WANG F, LEI T, et al. Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 108-120.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  22
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-03-13
  • 录用日期:  2025-03-24
  • 网络出版日期:  2025-06-03

目录

    /

    返回文章
    返回
    服务号
    订阅号