• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于场景感知的水下视觉目标跟踪方法

胡千伟 王代维 李人杰 俞晓帆 康彬 苏偌宇

胡千伟, 王代维, 李人杰, 等. 基于场景感知的水下视觉目标跟踪方法[J]. 水下无人系统学报, 2025, 33(2): 1-9 doi: 10.11993/j.issn.2096-3920.2025-0007
引用本文: 胡千伟, 王代维, 李人杰, 等. 基于场景感知的水下视觉目标跟踪方法[J]. 水下无人系统学报, 2025, 33(2): 1-9 doi: 10.11993/j.issn.2096-3920.2025-0007
HU Qianwei, WANG Daiwei, LI Renjie, YU Xiaofan, KANG Bin, SU Nuoyu. Scene Perception Oriented Underwater Visual Object Tracking[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0007
Citation: HU Qianwei, WANG Daiwei, LI Renjie, YU Xiaofan, KANG Bin, SU Nuoyu. Scene Perception Oriented Underwater Visual Object Tracking[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0007

基于场景感知的水下视觉目标跟踪方法

doi: 10.11993/j.issn.2096-3920.2025-0007
基金项目: 国家自然科学基金项目资助(62171232).
详细信息
    作者简介:

    胡千伟(2000-), 男, 硕士研究生, 主要研究方向为水下信号处理及计算机视觉

  • 中图分类号: U666.74; TJ630.34

Scene Perception Oriented Underwater Visual Object Tracking

  • 摘要: 水下视觉目标跟踪是自主水下航行器(AUV)场景理解的核心技术之一。然而, 复杂水下环境中的光照不均、背景干扰和目标外观变化等问题, 严重影响传统视觉目标跟踪方法的准确性和稳定性。现有方法主要依赖目标的表观建模, 难以实现复杂环境下可靠跟踪, 尤其是在相似目标干扰的情况下, 容易导致误识别和目标漂移。文中提出了一种基于场景感知的水下单目标跟踪方法, 通过基于区域分割的图卷积模块提取场景内所有目标区域, 并结合图卷积网络建模目标区域与周围关键区域的长距离依赖关系, 显著提升对相似目标的区分能力。此外, 文中引入双视图对比学习策略, 通过生成随机扰动的目标特征视图, 实现图卷积模块的无监督在线更新, 使得模型能够在复杂环境下保持较强的适应性和稳定性。实验表明, 所提方法在跟踪精度和鲁棒性方面显著优于经典方法, 尤其在光照变化大、背景复杂和相似目标干扰较强的场景下, 成功率和精确度均有明显提升。这表明文中研究有效解决了水下目标跟踪中因光照变化和背景干扰导致的目标漂移问题, 能在相似目标存在时保持稳定跟踪, 为水下无人系统提供了高效可靠的目标跟踪解决方案。

     

  • 图  1  带有干扰物的背景示例

    Figure  1.  Example of background with interfering substances

    图  2  网络架构图

    Figure  2.  Network architecture diagram

    图  3  基于区域分割的图卷积模块示意图

    Figure  3.  Schematic diagram of the RS-GCN module

    图  4  UOT100数据集性能比较曲线图

    Figure  4.  Performance comparison curve of UOT100 dataset

    图  5  UTB180数据集性能比较曲线图

    Figure  5.  Performance comparison curve of UTB180 dataset

    图  6  不同算法的跟踪结果可视化

    Figure  6.  Visualization of tracking results of different algorithms

    表  1  不同目标跟踪算法在UOT100和UTB180数据集上的评价指标对比

    Table  1.   Comparison of evaluation indexes of different object tracking algorithms on UOT100 and UTB180 datasets

    跟踪器来源主干网络UOT100UTB180
    成功率/%精确度/%归一化/%成功率/%精确度/%归一化/%
    OSTrackECCV2022ViT-B64.3158.3080.4561.6856.6770.78
    NeighborTrackCVPR2023ViT-B65.8460.3982.7063.4657.7473.48
    UOSTrackOCEAN2023ViT-B67.6262.4784.9864.9758.8974.94
    OKTrackNeurIPS2024VIT-B68.7365.1386.7166.8559.1377.23
    文中方法ViT-B70.2865.4987.8367.5360.3978.96
    下载: 导出CSV

    表  2  不同目标跟踪算法在UTB180数据集上的实时性能对比

    Table  2.   Real-time performance comparison of different object tracking algorithms on UTB180 dataset

    跟踪器参数量/MFLOPs/GFPS
    OSTrack83.116.783.1
    NeighborTrack85.318.385.2
    UOSTrack87.419.887.6
    OKTrack92.121.590.5
    Ours84.217.991.3
    下载: 导出CSV

    表  3  UTB180数据集消融实验

    Table  3.   Ablation experiment table of UTB180 dataset

    RS-GCN双视图图对比
    学习策略
    成功率/%精确度/%归一化/%
    63.0356.5272.61
    65.8357.9175.84
    66.1958.2677.43
    67.5360.3978.96
    下载: 导出CSV
  • [1] 吴晏辰, 王英民. 面向小样本数据的水下目标识别神经网络深层化研究[J]. 西北工业大学学报, 2022, 40(1): 40-46. doi: 10.3969/j.issn.1000-2758.2022.01.005
    [2] CAI L, MCGUIRE N E, HANLON R, et al. Semi-supervised visual tracking of marine animals using autonomous underwater vehicles[J]. International Journal of Computer Vision, 2023, 131(6): 1406-1427.
    [3] KHAN S, ULLAH I, ALI F, et al. Deep learning-based marine big data fusion for ocean environment monitoring: Towards shape optimization and salient objects detection[J]. Frontiers in Marine Science, 2023, 9: 1094915.
    [4] KATIJA K, ROBERTS P L D, DANIELS J, et al. Visual tracking of deepwater animals using machine learning-controlled robotic underwater vehicles[C]//Proceedings of the IEEE/CVF winter conference on applications of computer vision. Waikoloa, HI, USA: IEEE, 2021: 860-869.
    [5] LI Y, WANG B, LI Y, et al. Underwater object tracker: UOSTrack for marine organism grasping of underwater vehicles[J]. Ocean Engineering, 2023, 285: 115449.
    [6] Zhang C, Liu L, Huang G, et al. WebUOT-1M: Advancing Deep Underwater Object Tracking with A Million-Scale Benchmark[C]//The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track.
    [7] KEZEBOU L, OLUDARE V, PANETTA K, et al. Underwater object tracking benchmark and dataset[C]//2019 IEEE International Symposium on Technologies for Homeland Security (HST). Woburn, Massachusetts, USA: IEEE, 2019: 1-6.
    [8] PANETTA K, KEZEBOU L, OLUDARE V, et al. Comprehensive underwater object tracking benchmark dataset and underwater image enhancement with GAN[J]. IEEE Journal of Oceanic Engineering, 2021, 47(1): 59-75.
    [9] ALAWODE B, GUO Y, UMMAR M, et al. Utb180: A high-quality benchmark for underwater tracking[C]//Proceedings of the Asian Conference on Computer Vision. Macao, China: Springer, 2022: 3326-3342.
    [10] ALAWODE B, DHAREJO F A, UMMAR M, et al. Improving underwater visual tracking with a large scale dataset and image enhancement[EB/OL]. (2023-08-30)[2025-03-20]. arXiv preprint arXiv: 2308.15816, 2023.
    [11] WASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL] 2017. arXiv. 1706.03762.
    [12] KUGARAJEEVAN J, KOKUL T, RAMANAN A, et al. Transformers in single object tracking: An experimental survey[J]. IEEE Access, 2023, 11: 80297-80326.
    [13] ZHANG Q, CAO R, SHI F, et al. Interpreting CNN knowledge via an explanatory graph[C]//Proceedings of the AAAI conference on artificial intelligence. Hilton New Orleans Riverside, New Orleans, Louisiana, USA: AAAI, 2018, 32(1).
    [14] SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
    [15] WANG Y, SHEN X, YUAN Y, et al. Tokencut: Segmenting objects in images and videos with self-supervised transformer and normalized cut[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15790-15801.
    [16] AHMED M, SERAJ R, ISLAM S M S. The k-means algorithm: A comprehensive survey and performance evaluation[J]. Electronics, 2020, 9(8): 1295.
    [17] GUPTA M R, CHEN Y. Theory and use of the EM algorithm[J]. Foundations and Trends® in Signal Processing, 2011, 4(3): 223-296.
    [18] ZHU Y, XU Y, YU F, et al. Deep graph contrastive representation learning[EB/OL]. (2020-06-08) [2025-03-20]. arXiv preprint arXiv: 2006.04131, 2020.
    [19] HUANG L, ZHAO X, HUANG K. Got-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1562-1577.
    [20] YE B, CHANG H, MA B, et al. Joint feature learning and relation modeling for tracking: A one-stream framework[C]//European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022: 341-357.
    [21] CHEN Y H, WANG C Y, YANG C Y, et al. Neighbortrack: Single object tracking by bipartite matching with neighbor tracklets and its applications to sports[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE, 2023: 5139-5148.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-03-14
  • 录用日期:  2025-03-17
  • 网络出版日期:  2025-04-01

目录

    /

    返回文章
    返回
    服务号
    订阅号