• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数值模拟的仿生波动鳍变速推进特性分析

许传新 刘贵杰 马鹏磊 李广浩 姚兵 曾嘉俊

许传新, 刘贵杰, 马鹏磊, 等. 基于数值模拟的仿生波动鳍变速推进特性分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0001
引用本文: 许传新, 刘贵杰, 马鹏磊, 等. 基于数值模拟的仿生波动鳍变速推进特性分析[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2025-0001
XU Chuanxin, LIU Guijie, Ma Penglei, LI Guanghao, YAO Bing, Zeng Jiajun. Numerical simulation based variable speed control strategy for bionic undulating fins[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0001
Citation: XU Chuanxin, LIU Guijie, Ma Penglei, LI Guanghao, YAO Bing, Zeng Jiajun. Numerical simulation based variable speed control strategy for bionic undulating fins[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0001

基于数值模拟的仿生波动鳍变速推进特性分析

doi: 10.11993/j.issn.2096-3920.2025-0001
基金项目: 山东省泰山学者计划项目(No.tstp20231215); 中国海洋科技协同创新中心项目(22-05-CXZX-04-04-22); 山东省自然科学基金(No.ZR2021QE189).
详细信息
    作者简介:

    许传新(1998-), 男, 在读硕士, 主要研究方向为海洋机电装备技术

  • 中图分类号: TP24; TB126

Numerical simulation based variable speed control strategy for bionic undulating fins

  • 摘要: 仿生波动鳍机器人具有独特的水动力性能。文中通过数值模拟的方式对波动鳍加、减速过程的水动力响应进行探究, 揭示了加、减速阶段推进力与控制频率的关系。结果表明, 在刚步入高频阶段时, 低频阶段产生的涡旋与新产生的涡旋融合在一起, 导致推力高于正常值, 可通过适当增大频率进行控制。而刚步入低频阶段时, 当频率降幅较小时, 涡旋来不及脱落, 产生长时间的不规则的较高推力, 可适当降低频率梯度以减小这种影响。当降幅过大时, 效果会明显减弱。这项研究将为波动鳍机器人的变速时的精确控制提供支持, 提高控制系统稳定性。

     

  • 图  1  线翎电鳗及其物理学模型

    Figure  1.  The apteronotus albifrons and its physical model

    图  2  计算区域

    Figure  2.  Calculation region

    图  3  不同尺寸网格产生的推力

    Figure  3.  Thrust generated by different mesh sizes

    图  4  网格划分细节

    Figure  4.  Mesh division details

    图  5  不同时间步长产生的推力对比

    Figure  5.  Comparison of thrust generated by different time steps

    图  6  A组加速阶段推力变化曲线

    Figure  6.  Thrust change curve in acceleration stage of group A

    图  7  B组加速阶段推力变化曲线

    Figure  7.  Thrust change curve in acceleration stage of group B

    图  8  不同频率差导致的时间间隔

    Figure  8.  Time intervals due to different frequency differences

    图  9  到达稳定状态的时间间隔

    Figure  9.  Time interval to reach steady state

    图  10  加速阶段的稳定性变化

    Figure  10.  Stability changes during the acceleration phase

    图  11  加速前后波动鳍表面产生的涡旋变化

    Figure  11.  Vortex changes generated on the surface of the undulating fins before and after acceleration

    图  12  减速阶段波动鳍产生的推进力变化曲线

    Figure  12.  Curves of change in propulsive force generated by undulating fins during deceleration phase

    图  13  波动鳍表面流速变化

    Figure  13.  Undulating Fin Surface Velocity Changes

    图  14  波动鳍表面压力

    Figure  14.  Surface pressure of undulating fin

    图  15  波动鳍周围流场

    Figure  15.  Flow field around the undulating fin

    图  16  减速前后波动鳍表面产生的3D涡旋变化

    Figure  16.  3D vortex changes generated on the surface of the undulating fins before and after deceleration

    图  17  减速前后波动鳍表面产生的2D涡旋变化

    Figure  17.  2D vortex changes generated on the surface of the undulating fins before and after deceleration

    表  1  波动鳍的关键参数

    Table  1.   Key parameters of fluctuating fins

    参数 数值
    长度/L 1000 mm
    宽度/B 200 mm
    最大摆角/θmax 90°
    厚度/b 10 mm
    相位差/φ 90°
    摆幅/H 100 mm
    波数/Wn 2
    波长/λ 500 mm
    频率/f 0.25 Hz~1 Hz
    下载: 导出CSV

    表  2  网格无关性验证

    Table  2.   Verification of grid-independence

    网格尺寸/mm 鳍面网格 内流域网格 外流域网格
    精细网格 5 50 100
    中等网格 10 50 100
    粗大网格 15 50 100
    下载: 导出CSV

    表  3  方案分组情况

    Table  3.   Grouping of the programmes

    组别 初始频率/Hz 目标频率/Hz
    加速阶段A组 0.25 0.5
    0.75
    1.0
    加速阶段B组 0.25 1.0
    0.5
    0.75
    减速阶段 1.0 0.25
    0.5
    0.75
    下载: 导出CSV
  • [1] 王文谦, 马鹏磊, 李广浩, 等. 仿生机器鱼步态控制及闭环运动控制方法综述[J]. 中国舰船研究, 2024, 19(1): 29-45.

    WANG W Q, MA P L, LI G H, et al. Review of gait control and closed-loop motion control methods for bionic robotic fish[J]. Chinese Journal of Ship Research, 2024, 19(1): 29-45.
    [2] DONG H, WU Z, ZHANG P, et al. Separate control strategy for a biomimetic gliding robotic fish[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(5): 2535-44.
    [3] SHAO H, DONG B, ZHENG C, et al. Thrust improvement of a biomimetic robotic fish by using a deformable caudal fin[J]. Biomimetics, 2022, 7(3): 12.
    [4] WANG M, WANG K, ZHAO Q, et al. LQR Control and Optimization for Trajectory Tracking of Biomimetic Robotic Fish Based on Unreal Engine[J]. Biomimetics, 2023, 8(2): 17.
    [5] CAO Y, XIE Y, HE Y, et al. Bioinspired central pattern generator and TS fuzzy neural network-based control of a robotic manta for depth and heading tracking[J]. Journal of Marine Science and Engineering, 2022, 10(6): 758. doi: 10.3390/jmse10060758
    [6] HAO Y, CAO Y, CAO Y, et al. Course control of a manta robot based on amplitude and phase differences[J]. Journal of Marine Science and Engineering, 2022, 10(2): 285. doi: 10.3390/jmse10020285
    [7] WANG M, ZHANG Y, YU J. An SNN-CPG hybrid locomotion control for biomimetic robotic fish[J]. Journal of Intelligent & Robotic Systems, 2022, 105(2): 45.
    [8] CHEN L, HU Q, ZHANG H, et al. Research on underwater motion modeling and closed-loop control of bionic undulating fin robot[J]. Ocean Engineering, 2024, 299: 117400. doi: 10.1016/j.oceaneng.2024.117400
    [9] LE T-L, DAT P T. A Computational Fluid Dynamics Study of Modeling and Hydrodynamic Characteristics of a Bionic Undulating Fin[J]. International Journal of Mechanical Engineering, 2022, 7(4): 949
    [10] HAN P, LAUDER G V, DONG H. Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement[J]. Physics of Fluids, 2020, 32(1): 011902.
    [11] CHEN L, BI S, CAI Y, et al. Design and hydrodynamic experiment research on novel biomimetic pectoral fins of a ray-inspired robotic fish[J]. Machines, 2022, 10(8): 606. doi: 10.3390/machines10080606
    [12] HU Q-Q, YU Y-L. The hydrodynamic effects of undulating patterns on propulsion and braking performances of long-based fin[J]. AIP Advances, 2022, 12(3): 035319 doi: 10.1063/5.0083912
    [13] REN K, YU J. Amplitude of undulating fin in the vicinity of a wall: Influence of unsteady wall effect on marine propulsion[J]. Ocean Engineering, 2022, 249: 110987. doi: 10.1016/j.oceaneng.2022.110987
    [14] PANG S, QIN F, SHANG W, et al. Optimized design and investigation about propulsion of bionic Tandem undulating fins I: Effect of phase difference[J]. Ocean Engineering, 2021, 239: 109842. doi: 10.1016/j.oceaneng.2021.109842
    [15] XIA M, WANG H, YIN Q, et al. Design and mechanics of a composite wave-driven soft robotic fin for biomimetic amphibious robot[J]. Journal of Bionic Engineering, 2023, 20(3): 934-952. doi: 10.1007/s42235-022-00328-4
    [16] SHI X, CHEN Z, ZHANG T, et al. Hydrodynamic performance of a biomimetic undulating fin robot under different water conditions[J]. Ocean Engineering, 2023, 288: 116068. doi: 10.1016/j.oceaneng.2023.116068
    [17] DAS A K, SINGH R K, GUPTA N, et al. Comparative study using renormalized group k-ɛ, realizable k-ɛ, and standard k-ɛ models for flow through S-shaped diffuser[J]. International Journal on Interactive Design and Manufacturing (IJIDeM), 2024, 18(5): 3397-3411. doi: 10.1007/s12008-023-01609-w
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-02
  • 修回日期:  2025-02-04
  • 录用日期:  2025-02-12
  • 网络出版日期:  2025-04-18

目录

    /

    返回文章
    返回
    服务号
    订阅号