Numerical Simulation of Variable-Speed Propulsion Characteristics of Bionic Undulating Fins
-
摘要: 仿生波动鳍机器人的水动力性能对其精准控制具有重要意义。文中通过数值仿真的方式对波动鳍加、减速过程中的水动力响应机制进行分析, 揭示了变速阶段推进力与控制频率的关系。研究结果表明: 加速阶段,当频率从低频升至高频时, 低频阶段残留的涡旋与高频阶段新产生的涡旋融合, 导致推力高于稳态值, 可通过适当增大频率进行控制; 减速阶段,频率降幅较小时, 涡旋脱落滞后, 产生长时间不规则的较高推力, 可适当降低频率梯度以减小这种影响,而当频率降幅过大时, 效果会明显减弱。文中研究可为仿生波动鳍机器人变速精确控制提供理论支持, 有助于提升控制系统稳定性。Abstract: The hydrodynamic performance of bionic undulating fin robots is crucial for their precise control. This paper investigated the hydrodynamic response mechanism of the undulating fin during acceleration and deceleration through numerical simulation, revealing the relationship between the propulsive force and control frequency at variable-speed stages. The results show that at the acceleration stage, when the frequency increases from low to high, the vortices remaining at the low-frequency stage merge with newly generated vortices at the high-frequency stage, resulting in a propulsive force higher than steady value, which can be controlled by appropriately increasing the frequency; at the deceleration stage, when the frequency drop is small, the lagging vortices come off too late, producing a long period of irregular higher propulsive force, and the frequency gradient can be appropriately reduced to minimize this effect. This effect is significantly reduced when the frequency drop is too large. This research can provide theoretical support for the precise control of bionic undulating fin robots during speed changes, contributing to the improvement of control system stability.
-
Key words:
- bionic undulating fin /
- hydrodynamic /
- variable-speed propulsion /
- vortices
-
表 1 波动鳍关键参数
Table 1. Key parameters of fluctuating fins
参数 符号 数值 单位 长度 L 1 000 mm 宽度 B 200 mm 厚度 b 10 mm 相位差 φ 90 (°) 摆幅 H 100 mm 波数 Wn 2 频率 f 0.25~1 Hz 最大摆角 θmax 90 (°) 表 2 具体网格尺寸
Table 2. Specific grid dimensions
网格类型 网格尺寸/mm 鳍面网格 内流域网格 外流域网格 精细网格 5 50 100 中等网格 10 50 100 粗大网格 15 50 100 表 3 方案分组情况
Table 3. Grouping of the programmes
Hz 组别 初始频率 目标频率 加速阶段A组 0.25 0.50 0.75 1.00 加速阶段B组 0.25 1.00 0.50 0.75 减速阶段 1.0 0.25 0.50 0.75 -
[1] 王文谦, 马鹏磊, 李广浩, 等. 仿生机器鱼步态控制及闭环运动控制方法综述[J]. 中国舰船研究, 2024, 19(1): 29-45.WANG W Q, MA P L, LI G H, et al. Review of gait control and closed-loop motion control methods for bionic robotic fish[J]. Chinese Journal of Ship Research, 2024, 19(1): 29-45. [2] DONG H, WU Z, ZHANG P, et al. Separate control strategy for a biomimetic gliding robotic fish[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(5): 2535-44. [3] SHAO H, DONG B, ZHENG C, et al. Thrust improvement of a biomimetic robotic fish by using a deformable caudal fin[J]. Biomimetics, 2022, 7(3): 113. [4] WANG M, WANG K, ZHAO Q, et al. LQR control and optimization for trajectory tracking of biomimetic robotic fish based on unreal engine[J]. Biomimetics, 2023, 8(2): 236. [5] CAO Y H, XIE Y, HE Y, et al. Bioinspired central pattern generator and T-S fuzzy neural network-based control of a robotic manta for depth and heading tracking[J]. Journal of Marine Science and Engineering, 2022, 10(6): 758. doi: 10.3390/jmse10060758 [6] HAO Y, CAO Y, CAO Y, et al. Course control of a manta robot based on amplitude and phase differences[J]. Journal of Marine Science and Engineering, 2022, 10(2): 285. doi: 10.3390/jmse10020285 [7] WANG M, ZHANG Y, YU J. An SNN-CPG hybrid locomotion control for biomimetic robotic fish[J]. Journal of Intelligent & Robotic Systems, 2022, 105(2): 45. [8] CHEN L, HU Q, ZHANG H, et al. Research on underwater motion modeling and closed-loop control of bionic undulating fin robot[J]. Ocean Engineering, 2024, 299: 117400. doi: 10.1016/j.oceaneng.2024.117400 [9] LE T L, DAT P T. A computational fluid dynamics study of modeling and hydrodynamic characteristics of a bionic undulating fin[J]. International Journal of Mechanical Engineering, 2022, 7(4): 949. [10] HAN P, LAUDER G V, DONG H. Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement[J]. Physics of Fluids, 2020, 32(1): 011902. [11] CHEN L, BI S, CAI Y, et al. Design and hydrodynamic experiment research on novel biomimetic pectoral fins of a ray-inspired robotic fish[J]. Machines, 2022, 10(8): 606. doi: 10.3390/machines10080606 [12] HU Q Q, YU Y L. The hydrodynamic effects of undulating patterns on propulsion and braking performances of long-based fin[J]. AIP Advances, 2022, 12(3): 035319. doi: 10.1063/5.0083912 [13] REN K, YU J. Amplitude of undulating fin in the vicinity of a wall: Influence of unsteady wall effect on marine propulsion[J]. Ocean Engineering, 2022, 249: 110987. doi: 10.1016/j.oceaneng.2022.110987 [14] PANG S, QIN F, SHANG W, et al. Optimized design and investigation about propulsion of bionic Tandem undulating fins I: Effect of phase difference[J]. Ocean Engineering, 2021, 239: 109842. doi: 10.1016/j.oceaneng.2021.109842 [15] XIA M, WANG H, YIN Q, et al. Design and mechanics of a composite wave-driven soft robotic fin for biomimetic amphibious robot[J]. Journal of Bionic Engineering, 2023, 20(3): 934-952. doi: 10.1007/s42235-022-00328-4 [16] SHI X, CHEN Z, ZHANG T, et al. Hydrodynamic performance of a biomimetic undulating fin robot under different water conditions[J]. Ocean Engineering, 2023, 288: 116068. doi: 10.1016/j.oceaneng.2023.116068 [17] DAS A K, SINGH R K, GUPTA N, et al. Comparative study using renormalized group k-ɛ, realizable k-ɛ, and standard k-ɛ models for flow through S-shaped diffuser[J]. International Journal on Interactive Design and Manufacturing(IJIDeM), 2024, 18(5): 3397-3411. doi: 10.1007/s12008-023-01609-w -

下载: