• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊聚类和动态权重分配的水下传感器网络智能信任评估方法

王照辉 韩光洁 杜嘉欣 林川 王雷

王照辉, 韩光洁, 杜嘉欣, 等. 基于模糊聚类和动态权重分配的水下传感器网络智能信任评估方法[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0176
引用本文: 王照辉, 韩光洁, 杜嘉欣, 等. 基于模糊聚类和动态权重分配的水下传感器网络智能信任评估方法[J]. 水下无人系统学报, xxxx, x(x): x-xx doi: 10.11993/j.issn.2096-3920.2024-0176
WANG Zhaohui, HAN Guangjie, DU Jiaxin, LIN Chuan, WANG Lei. Intelligent Trust Evaluation Method for Underwater Sensor Networks Based on Fuzzy Clustering and Dynamic Weight Allocation[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0176
Citation: WANG Zhaohui, HAN Guangjie, DU Jiaxin, LIN Chuan, WANG Lei. Intelligent Trust Evaluation Method for Underwater Sensor Networks Based on Fuzzy Clustering and Dynamic Weight Allocation[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0176

基于模糊聚类和动态权重分配的水下传感器网络智能信任评估方法

doi: 10.11993/j.issn.2096-3920.2024-0176
基金项目: 国家自然科学基金区域创新发展联合基金(U22A2011).
详细信息
    通讯作者:

    韩光洁(1972-), 男, 博士, 教授, 主要研究方向为物联网、人工智能、工业互联网、智慧海洋及智能计算等.

  • 中图分类号: TN929; TP3

Intelligent Trust Evaluation Method for Underwater Sensor Networks Based on Fuzzy Clustering and Dynamic Weight Allocation

  • 摘要: 水下传感器网络(USNs)在海洋环境监测等领域具有重要作用, 同时面临诸多的安全挑战。信任模型能有效抵御面临的内部攻击, 保障网络的可靠性。现有信任评估方法大多依赖于信任特征的线性加权和阈值比较的决策方式。然而, 水下环境是动态的, 水流和温度等环境条件在时空上不断变化, 会导致节点信任特征的变化差异和信任值的整体波动。这种动态特性使得最优权重和合理阈值难以有效确定, 影响评估的准确性与决策的可靠性。为解决这一问题, 文中提出了一种基于模糊聚类和动态权重分配的智能信任评估方法。该方法首先对USNs进行分层动态拓扑建模, 以增强普适性; 在此基础上综合计算节点的通信、能量和数据特征, 以全面反映节点的状态; 然后使用无监督机器学习算法模糊C均值聚类, 实现自适应的节点信任决策, 同时采用主客观结合策略, 根据网络和环境条件为特征动态分配权重, 从而实现对节点信任度的智能评估。仿真实验结果表明, 该方法能够有效评估水下环境中节点的信任度, 提高信任决策的可靠性, 增强网络的安全性。

     

  • 图  1  考虑埃克曼漂流的USNs模型图

    Figure  1.  Consider the USNs model diagram of the Ekman drift

    图  2  埃克曼漂流模型图

    Figure  2.  Diagram of the Ekman drift current

    图  3  信任评估方法流程图

    Figure  3.  Flowchart of the trust assessment methodology

    图  4  不同场景和方法下均值和标准差计算值图

    Figure  4.  Plots of calculated values of mean and standard deviation for different scenarios and methods

    图  5  不同方法下正常节点的数据信任特征值图

    Figure  5.  Graph of data trust eigenvalues of normal nodes under different methods

    图  6  选择转发攻击下节点的平均信任值随时间周期变化图

    Figure  6.  Select the graph of the average trust value of a node under a forwarding attack as a function of time period

    图  7  拒绝服务攻击下节点的平均信任值随时间周期变化图

    Figure  7.  The average trust value of a node under a denial-of-service attack over time period

    图  8  选择转发攻击下恶意节点检测率随恶意节点比例变化图

    Figure  8.  Select the graph of the detection rate of malicious nodes as a function of the proportion of malicious nodes under forwarding attacks

    图  9  拒绝服务攻击下恶意节点检测率随恶意节点比例变化图

    Figure  9.  The detection rate of malicious nodes under denial-of-service attacks varies with the proportion of malicious nodes

    表  1  仿真参数列表

    Table  1.   Parameters of simulation

    参数 取值
    纬度/° 45
    海面10米处风速/m/s 10
    网络范围/m3 2 000×2 000×1000
    节点数量/个 200
    节点通信范围/m 500
    节点初始能量/J 1000
    节点通信频率/kHz 26
    节点数据速率/kbps 10
    数据包大小/B 100
    评估周期/s 60
    下载: 导出CSV

    表  2  不同方法下特征线性加权值

    Table  2.   Linear weighting of features under different methods

    节点特征值相等权重计算值综合权重计算值
    (0.90,0.78,0.10)0.590.34
    (0.68,0.56,0.17)0.470.31
    (0.77,0.86,0.62)0.750.70
    (0.73,0.78,0.18)0.560.38
    (0.77,1.00,0.04)0.600.36
    (0.82,0.86,0.24)0.640.45
    (0.81,0.88,0.34)0.670.52
    (0.76,0.66,0.56)0.660.60
    (0.84,0.39,0.02)0.420.16
    (0.83,0.58,0.53)0.650.55
    下载: 导出CSV
  • [1] 苏毅珊, 张贺贺, 张瑞, 等. 水下无线传感器网络安全研究综述[J]. 电子与信息学报, 2023, 45(3): 1121-1133. doi: 10.11999/JEIT211576

    SU Y S, ZHANG H H, ZHANG R, et al. Review of security for underwater wireless sensor networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1121-1133. doi: 10.11999/JEIT211576
    [2] ZHU R, BOUKERCHE A, LONG L, et al. Design guidelines on trust management for underwater wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2024, 26(4): 2547-2576.
    [3] JIANG J, HAN G, WANG F, et al. An efficient distributed trust model for wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 26(5): 1228-1237.
    [4] JIANG J, ZHU X, HAN G, et al. A dynamic trust evaluation and update mechanism based on C4.5 decision tree in underwater wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 9031-9040. doi: 10.1109/TVT.2020.2999566
    [5] JIANG B, ZHOU R, LUO F, et al. Hybrid trust model for identifying malicious attacks in underwater acoustic sensor network[J]. IEEE Sensors Journal, 2024, 24(16): 26743-26754. doi: 10.1109/JSEN.2024.3424252
    [6] LIANG K, SUN S, HUANG X, et al. A trust-based malicious detection scheme for underwater acoustic sensor networks[C]//International Conference on Artificial Intelligence and Security. Qinghai, China: CCIS, 2022: 427-440.
    [7] ZHU R, BOUKERCHE A, LI P, et al. A Traffic-aware trust model based on edge computing for underwater wireless sensor networks[C]//ICC 2024-IEEE International Conference on Communications. Denver, CO, USA: IEEE, 2024: 2390-2395.
    [8] DU J, HAN G, LIN C, et al. ITrust: An anomaly-resilient trust model based on isolation forest for underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2020, 21(5): 1684-1696.
    [9] ZHANG R, ZHANG J, WANG Q, et al. DOIDS: An intrusion detection scheme based on DBSCAN for opportunistic routing in underwater wireless sensor networks[J]. Sensors, 2023, 23(4): 2096. doi: 10.3390/s23042096
    [10] ZHU R, BOUKERCHE A, HUANG X, et al. DESLR: Energy-efficient and secure layered routing based on channel-aware trust model for UASNs[J]. Computer Networks, 2023, 234(10): 1-11.
    [11] 于洋, 孙思卿, 张立川, 等. 自主水下航行器集群组网技术发展与展望[J]. 水下无人系统学报, 2024, 32(2): 194-207. doi: 10.11993/j.issn.2096-3920.2024-0055

    YU Y, SUN S Q, ZHANG L C, et al. Development and prospects of networking technologies for autonomous undersea vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 194-207. doi: 10.11993/j.issn.2096-3920.2024-0055
    [12] PRICE J F, WELLER R A, SCHUDLICH R R. Wind-driven ocean currents and Ekman transport[J]. Science, 1987, 238(4833): 1534-1538. doi: 10.1126/science.238.4833.1534
    [13] HAN G, SHEN S, SONG H, et al. A stratification-based data collection scheme in underwater acoustic sensor networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10671-10682. doi: 10.1109/TVT.2018.2867021
    [14] CARUSO A, PAPARELLA F, VIEIRA L F M, et al. The meandering current mobility model and its impact on underwater mobile sensor networks[C]//IEEE INFOCOM 2008-The 27th Conference on Computer Communications. Phoenix, AZ, USA: IEEE, 2008: 221-225.
    [15] LUO J, YANG Y, WANG Z, et al. Localization algorithm for underwater sensor network: A review[J]. IEEE Internet of Things Journal, 2021, 8(17): 13126-13144. doi: 10.1109/JIOT.2021.3081918
    [16] CUSHMAN-ROISIN B, BECKERS J M. Introduction to geophysical fluid dynamics: physical and numerical aspects[M]. Waltham, MA, USA: Academic press, 2011.
    [17] COUTINHO R W L, BOUKERCHE A. OMUS: Efficient opportunistic routing in multi-modal underwater sensor networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5642-5655. doi: 10.1109/TWC.2021.3069117
    [18] JIANG J, HAN G, SHU L, et al. A trust model based on cloud theory in underwater acoustic sensor networks[J]. IEEE Transactions on Industrial Informatics, 2015, 13(1): 342-350.
    [19] HAN G, JIANG J, SHU L, et al. An attack-resistant trust model based on multidimensional trust metrics in underwater acoustic sensor network[J]. IEEE Transactions on Mobile Computing, 2015, 14(12): 2447-2459. doi: 10.1109/TMC.2015.2402120
    [20] ROUSSEEUW P J , HUBERT M. Anomaly detection by robust statistics[J]. Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery, 2017, 8(2): 1236.
    [21] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. Berlin, Germany: Springer Science & Business Media, 2013.
    [22] HUNG W L, YANG M S, CHEN D H. Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation[J]. Pattern Recognition Letters, 2008, 29(9): 1317-1325. doi: 10.1016/j.patrec.2008.02.003
    [23] ZHANG B, LI C C, DONG Y, et al. A comparative study between analytic hierarchy process and its fuzzy variants: a perspective based on two linguistic models[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(11): 3270-3279.
    [24] HE X, CAI D, NIYOGI P, et al. Laplacian score for feature selection[C]//Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2005: 507-514.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-20
  • 修回日期:  2025-03-13
  • 录用日期:  2025-03-17
  • 网络出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    服务号
    订阅号