• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极速学习的欠驱动无人船鲁棒自适应路径跟踪控制

贺新宇 王宁 吴浩峻

贺新宇, 王宁, 吴浩峻. 基于极速学习的欠驱动无人船鲁棒自适应路径跟踪控制[J]. 水下无人系统学报, 2025, 33(2): 1-9 doi: 10.11993/j.issn.2096-3920.2024-0170
引用本文: 贺新宇, 王宁, 吴浩峻. 基于极速学习的欠驱动无人船鲁棒自适应路径跟踪控制[J]. 水下无人系统学报, 2025, 33(2): 1-9 doi: 10.11993/j.issn.2096-3920.2024-0170
HE Xinyu, WANG Ning, Wu Haojun. Extreme Learning-Based Robust Adaptive Path Following Control of An Underactuated Unmanned Surface Vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0170
Citation: HE Xinyu, WANG Ning, Wu Haojun. Extreme Learning-Based Robust Adaptive Path Following Control of An Underactuated Unmanned Surface Vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0170

基于极速学习的欠驱动无人船鲁棒自适应路径跟踪控制

doi: 10.11993/j.issn.2096-3920.2024-0170
基金项目: 国防基础科研计划一般项目(JCKY2022410C013) 省市级.
详细信息
    通讯作者:

    王 宁, 男, (1983-), 教授, 博士生导师, 主要研究方向为海洋机器人自主控制及绿色智能船舶控制.

  • 中图分类号: TJ630.2; U674.941

Extreme Learning-Based Robust Adaptive Path Following Control of An Underactuated Unmanned Surface Vehicle

  • 摘要: 针对欠驱动无人船 (USV) 存在未建模动力学、参数不确定性和干扰等未知状况, 提出一种基于极速学习的鲁棒自适应路径跟踪控制方案。首先, 采用纵荡视线制导律, 同时制导纵荡速度与航向角, 避免制导过程的奇异现象, 使得USV快速收敛至期望路径; 其次, 将包含系统不确定性和外部干扰的未知动态封装成一个集总未知项, 利用极速学习机的单隐层前馈网络 (SLFN) 随机产生隐层节点在线辨识该未知项, 避免依赖USV先验知识和“维度爆炸”问题; 然后, 通过设计逼近残差自适应补偿器, 同时在线更新SLFN的输出权重和逼近残差, 形成双通道学习机制, 不仅可以增强逼近能力, 而且提高了跟踪精度; 最后,设计自适应路径跟踪控制器, 使得USV的纵荡速度与航向角制导误差可以渐进收敛到原点附近的小邻域。文中仿真研究验证了所提方案的有效性和优越性。

     

  • 图  1  USV模型

    Figure  1.  Model of USV

    图  2  USV路径跟踪示意图

    Figure  2.  Schematic diagram of USV path tracing

    图  3  SLFN结构图

    Figure  3.  Structure diagram of SLFN

    图  4  USV的EL-RAPFC方案

    Figure  4.  EL-RAPFC protocol for USV

    图  5  第1组仿真路径跟踪性能

    Figure  5.  Path following performance of the first set of simulation

    图  6  第1组仿真垂向与沿向跟踪误差

    Figure  6.  The first set simulates vertical and along-direction tracking errors

    图  7  第2组仿真路径跟踪性能

    Figure  7.  Path following performance of the second set of simulation

    图  8  第二组仿真垂向与沿向跟踪误差

    Figure  8.  The second set simulates the tracking error in the vertical and along directions ulation

    图  9  纵荡速度与航向角制导跟踪比较

    Figure  9.  Comparison of surge speed and heading angle guidance tracking

    图  10  纵荡速度与航向角跟踪误差

    Figure  10.  Surge speed and heading angle tracking errors

    图  11  复杂未知量及其逼近值

    Figure  11.  Complex unknown quantities and approximation values

    图  12  自适应逼近误差

    Figure  12.  Adaptive approximation errors

    图  13  USV的纵向与艏向控制输入

    Figure  13.  Longitudinal and heading control inputs for USV

  • [1] XU Z S, HE S M, ZHOU W J, et al. Path Following control with sideslip reduction for underactuated unmanned surface vehicles[J]. IEEE Transactions on Industrial Electronics, 2024, 71(9): 11039-11047. doi: 10.1109/TIE.2023.3340191
    [2] 于长东, 刘新阳, 陈聪, 等. 基于多智能体深度强化学习的无人艇集群博弈对抗研究[J]. 水下无人系统学报, 2024, 32(1): 79-86. doi: 10.11993/j.issn.2096-3920.2023-0159

    YU C D, LIU X Y, CHEN C, et al. Research on game confrontation of unmanned surface vehicles swarmbased on multi-agent deep reinforcement learning[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 79-86. doi: 10.11993/j.issn.2096-3920.2023-0159
    [3] 谢少荣, 刘坚坚, 张丹. 复杂海况无人艇集群控制技术研究现状与发展[J]. 水下无人系统学报, 2020, 28(6): 584-596. doi: 10.11993/j.issn.2096-3920.2020.06.001

    XIE S R, LIU J J, ZHANG D. Current development of control technology for unmanned surface vessel clusters under complex sea conditions[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 584-596. doi: 10.11993/j.issn.2096-3920.2020.06.001
    [4] 何红坤, 王宁. 欠驱动无人船单目视觉伺服镇定控制[J]. 中国舰船研究, 2022, 17(5): 166-174,183.

    HE H K, WANG N. Monocular visual servo-based stabilization control of underactuated unmanned surface vehicle[J]. Chinese Journal of Ship Research, 2022, 17(5): 166-174,183.
    [5] WANG N, GAO Y, YANG C, et al. Reinforcement-learning-based finite-time tracking control of an unknown unmanned surface vehicle with input constraints.[J]. Neurocomputing, 2022, 484: 26-37. doi: 10.1016/j.neucom.2021.04.133
    [6] WANG N, AHN C K. Hyperbolic-Tangent LOS guidance-based finite-time path following of underactuated marine vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 67(10): 8566-8575.
    [7] FOSSEN T I, PETTERSEN K Y. On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws[J]. Automatica, 2014, 50(11): 2912-2917. doi: 10.1016/j.automatica.2014.10.018
    [8] FOSSEN T I, BREIVIK M, SKJETNE R. Line-of-sight path following of underactuated marine craft[J]. IFAC Proceedings Volumes, 2003, 36(21): 211-216.
    [9] CAHARIJA W, PETTERSEN K Y, BIBULI M, et al. Integral line-of-sight guidance and control of underactuated marine vehicles: Theory, simulations, and experiments[J]. IEEE Transactions on Control Systems Technology, 2016, 24: 1623-1642. doi: 10.1109/TCST.2015.2504838
    [10] FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-Sight path following for dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Transactions on Control Systems Technology, 2014, 23(2): 820-827.
    [11] Moe S , Pettersen K Y , Fossen T I , et al. Line-of-Sight Curved Path Following for Underactuated USVs and AUVs in the Horizontal Plane under the influence of Ocean Currents[C]//2016 24th Mediterranean Conference on Control and Automation (MED). Athens, Greece: IEEE, 2016: 38-45.
    [12] WANG N, SUN Z, YIN J C, et al. Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns[J]. Ocean Engineering, 2019, 176: 57-64. doi: 10.1016/j.oceaneng.2019.02.017
    [13] WANG N, SUN Z, JIAO Y H, et al. Surge-heading guidance-based finite-time path following of underactuated marine vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8523-8532. doi: 10.1109/TVT.2019.2927893
    [14] 刘炳文, 于金鹏, 刘加朋, 等. 考虑输入饱和的无人艇神经网络命令滤波反步控制[J]. 船舶工程, 2024, 46(4): 123-129.

    LIU B W, YU J P, LIU J P, et al. Neural network-based command filtered backstepping control for USV with input saturation[J]. Ship Engineering, 2024, 46(4): 123-129.
    [15] XIAO Y F, FENG Y, LIU T, et al. Integral sliding mode based finite-time tracking control for underactuated surface vessels with external disturbances[J]. Journal of marine science and engineering, 2021, 9(11): 1204. doi: 10.3390/jmse9111204
    [16] CHEN H, CHEN Y, WANG M Q. Trajectory tracking for underactuated surface vessels with time delays and unknown control directions[J]. IET Control Theory and Applications, 2022, 16(6): 587-599. doi: 10.1049/cth2.12250
    [17] RUBIO J D J. Robust feedback linearization for nonlinear processes control[J]. ISA Transactions, 2018, 74: 155-164. doi: 10.1016/j.isatra.2018.01.017
    [18] ROUT R, CUI R X, YAN W S. Sideslip-compensated guidance-based adaptive neural control of marine surface vessels[J]. IEEE Transactions on Cybernetics, 2020, 52(5): 2860-2871.
    [19] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
    [20] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892. doi: 10.1109/TNN.2006.875977
    [21] WANG N, SUN J C, ER M J, et al. A novel extreme learning control framework of unmanned surface vehicles[J]. IEEE Transactions on Cybernetics, 2016, 46(5): 1106-1117. doi: 10.1109/TCYB.2015.2423635
    [22] SUN J C, WANG N, ER M J, et al. Extreme learning control of surface vehicles with unknown dynamics and disturbances[J]. Neurocomputing, 2015, 167: 535-542. doi: 10.1016/j.neucom.2015.04.039
    [23] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. New York: John Wiley & Sons, 2011.
    [24] KHALIL H K. Nonlinear systems, 2nd[M]. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
    [25] GHOMMAM J, MNIF F, BENAL A, et al. Observer design for Euler–Lagrange systems: Application to path following control of an underactuated surface vessel[C]// IEEE International Conference on Intelligent Robots and Systems, San Diego, CA, USA: IEEE, 2007: 2883–2888.
  • 加载中
图(13)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-18
  • 修回日期:  2025-01-12
  • 录用日期:  2025-01-20
  • 网络出版日期:  2025-03-27

目录

    /

    返回文章
    返回
    服务号
    订阅号