• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UUV可折叠太阳能翼板减阻优化研究

王晨宇 彭利坤 陈佳宝 陈佳 王华睿 潘炜

王晨宇, 彭利坤, 陈佳宝, 等. UUV可折叠太阳能翼板减阻优化研究[J]. 水下无人系统学报, 2025, 33(4): 699-706 doi: 10.11993/j.issn.2096-3920.2024-0168
引用本文: 王晨宇, 彭利坤, 陈佳宝, 等. UUV可折叠太阳能翼板减阻优化研究[J]. 水下无人系统学报, 2025, 33(4): 699-706 doi: 10.11993/j.issn.2096-3920.2024-0168
WANG Chenyu, PENG Likun, CHEN Jiabao, CHEN Jia, WANG Huarui, PAN Wei. Research on Drag Reduction Optimization of Foldable Solar Wings for UUVs[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 699-706, 712. doi: 10.11993/j.issn.2096-3920.2024-0168
Citation: WANG Chenyu, PENG Likun, CHEN Jiabao, CHEN Jia, WANG Huarui, PAN Wei. Research on Drag Reduction Optimization of Foldable Solar Wings for UUVs[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 699-706, 712. doi: 10.11993/j.issn.2096-3920.2024-0168

UUV可折叠太阳能翼板减阻优化研究

doi: 10.11993/j.issn.2096-3920.2024-0168
详细信息
    作者简介:

    王晨宇(2001-), 男, 在读硕士, 主要研究方向为无人水下航行器性能优化

    通讯作者:

    彭利坤(1975-), 男, 教授博士生导师, 主要研究方向为机电液一体化及水下航行器操纵性能

  • 中图分类号: TJ630.2; U661.1

Research on Drag Reduction Optimization of Foldable Solar Wings for UUVs

  • 摘要: 针对无人水下航行器(UUV)在海洋观测、资源勘探等任务中面临的续航瓶颈问题, 文中聚焦新型可折叠太阳能翼板水动力性能优化问题。为平衡计算效率与优化精度, 以翼板特征点坐标、各边圆角因子、翼板间间隙以及翼板与艇体间隙为设计变量, 在CAESES软件中建立翼板参数化模型, 创新性地构建了Sobol全局取样与非支配排序遗传算法Ⅱ(NSGA-Ⅱ)优化算法相结合的混合优化框架: 首先利用Sobol算法在各变量阈值范围内生成80组样本点以充分探索设计空间, 继而通过NSGA-Ⅱ算法进行多代寻优。为避免传统代理模型精度衰减问题, 搭建了高精度水动力求解与优化算法耦合计算流程, 实现CAESES与STAR-CCM+软件的自动联合仿真, 对配备不同形状翼板的UUV逐一进行水动力分析, 探讨不同参数组合对总阻力的影响规律。优化结果表明: 2块翼板凸出艇体部分存在一定高度差有利于降低总阻力; 流场分析证实, 优化后的外形有效抑制了湍流引起的能量耗散。文中所提出的“参数化建模-智能优化-高精度验证”技术路线, 不仅降低了新构型UUV的直航阻力, 也为复杂附体优化提供了方法论参考, 对提升水下装备的能源利用效率具有重要工程价值。

     

  • 图  1  SAU-Ⅰ号UUV

    Figure  1.  SAU-ⅠUUV

    图  2  UUV三维模型示意图

    Figure  2.  3D model diagram of the UUV

    图  3  计算域和边界条件

    Figure  3.  Computational domain and boundary conditions

    图  4  网格数收敛性分析曲线

    Figure  4.  Convergence analysis curve of grid number

    图  5  时间步长收敛性分析曲线

    Figure  5.  Convergence analysis curve of time step

    图  6  数值仿真与实验结果对比

    Figure  6.  Comparison between numerical simulation and experimental results

    图  7  翼板参数化建模

    Figure  7.  Parametic modeling for wing plates

    图  8  控制平面形状的特征点分布

    Figure  8.  Distribution of characteristic points controlling the shape of a plane

    图  9  优化变量示意图

    Figure  9.  Diagram of optimization variables

    图  10  NSGA-算法优化流程

    Figure  10.  Optimization flow chart of NSGA- algorithm

    图  11  STAR-CCM+与CAESES耦合仿真流程

    Figure  11.  Coupled simulation flow chart of STAR-CCM+ and CAESES

    图  12  总阻力随迭代次数变化曲线

    Figure  12.  Curve of total resistance varying with iteration steps

    图  13  优化过程结果展示

    Figure  13.  Display of optimization process results

    图  14  优化前后翼板形状对比图

    Figure  14.  Comparison of wing plate shapes before and after optimization

    图  15  优化前后艇体表面压力对比图

    Figure  15.  Comparison of hull surface pressure before and after optimization

    图  16  优化前后阻力成分对比

    Figure  16.  Comparison of resistance components before and after optimization

    图  17  沿X方向艇体表面压力分布曲线

    Figure  17.  Pressure distribution curves along the hull surface in the X-direction

    图  18  艇体周围流场流线对比图

    Figure  18.  Comparison of flow lines around the hull

    图  19  优化前后湍流动能对比图

    Figure  19.  Comparison of turbulent kinetic energy before and after optimization

    表  1  模型参数

    Table  1.   Parameters of the model mm

    参数 数值 参数 数值
    总长度 3 242 最大直径 336
    艏部长度 350 平行中体长度 1 950
    艉部长度 942 太阳能舱段长度 860
    下载: 导出CSV

    表  2  优化变量及范围

    Table  2.   Optimize variables and ranges

    变量名称 含义 范围
    A-z/mm A点的z坐标 150~190
    Y1/mm 紧挨艇体的太阳能翼板与艇体的间隙 0~10
    Y2/mm 2块太阳能翼板的间隙 0~10
    Itop 顶部圆角因子 0~2
    Ibottom 底部圆角因子 0~2
    Ileft 左端圆角因子 0~2
    Iright 右端圆角因子 0~2
    下载: 导出CSV

    表  3  优化前后变量取值对比

    Table  3.   Comparison of variable values before and after optimization

    变量名称初始值优化值
    A-z/mm160173.99
    Y1/mm55.95
    Y2/mm51.93
    Itop00.92
    Ibottom00.92
    Ileft01.77
    Iright00.04
    总阻力/N47.0434.14
    下载: 导出CSV
  • [1] SAHOO A, DWIVEDY S K, ROBI P S. Advancements in the field of autonomous underwater vehicle[J]. Ocean Engineering, 2019, 181: 145-160. doi: 10.1016/j.oceaneng.2019.04.011
    [2] WANG X, WANG Y, WANG P, et al. Sailing efficiency optimization and experimental validation of a Petrel long-range autonomous underwater vehicle[J]. Ocean Engineering, 2023, 281: 114604. doi: 10.1016/j.oceaneng.2023.114604
    [3] HOU S, ZHANG Z, LIAN H, et al. Hull shape optimization of small underwater vehicle based on Kriging-based response surface method and multi-objective optimization algorithm[J]. Brodogradnja, 2022, 73(3): 111-134. doi: 10.21278/brod73307
    [4] SUN S, LUO W. Multidisciplinary design optimization of underwater vehicles based on a combined proxy model[J]. Journal of Marine Science and Engineering, 2024, 12(7): 1087. doi: 10.3390/jmse12071087
    [5] CRIMMINS D M, PATTY C T, BELIARD M A, et al. Long-endurance test results of the solar-powered AUV system[C]//Oceans 2006. Boston, USA: IEEE, 2006: 1-5.
    [6] 施迅, 周悦, 吴诗昊, 等. 三体模块化渔业监测AUV结构设计及外形优化[J]. 上海海洋大学学报, 2024, 33(6): 1429-1438.

    SHI X, ZHOU Y, WU S H, et al. Structure design and shape optimization of three-body modular fishery monitoring AUV[J]. Journal of Shanghai Ocean University, 2019, 33(6): 1429-1438.
    [7] CHEN S, FENG L. Multi-objective shape optimization of underwater vehicles based on an adaptive sampling algorithm[J]. Applied Ocean Research, 2024, 146: 103950. doi: 10.1016/j.apor.2024.103950
    [8] WEN Q B, FENG R, AN X, et al. Optimal design of an autonomous underwater helicopter’s shape based on combinatorial optimization strategy[J]. Ocean Engineering, 2022, 266: 113015. doi: 10.1016/j.oceaneng.2022.113015
    [9] WANG G B, WANG Y H, YANG M, et al. Design and motion performance of a novel variable-area tail for underwater gliders[J]. IEEE/ASME Transactions on Mechatronics, 2025, 30(3): 2132-2143.
    [10] 凌宏杰, 王志东, 张贝, 等. 基于组合优化算法的翼身融合水下滑翔机优化研究[J]. 西北工业大学学报, 2022, 40(5): 1125-1132.

    LING H J, WANG Z D, ZHANG B, et al. Research on optimization of wing-body fusion underwater glider based on combinatorial optimization algorithm[J]. Journal of Northwestern Polytechnical University, 2022, 40(5): 1125-1132.
    [11] HENKES R, HOOGENDOORN C. Numerical determination of wall functions for the turbulent natural-convection boundary-layer[J]. International Journal of Heat and Mass Transfer, 1990, 33(6): 1087-1097. doi: 10.1016/0017-9310(90)90242-M
    [12] KHARGHANI M, PASANDIDEHFARD M, NAEIMIRAD M. Turbulent transient boundary layer over a flat plate[J]. Ocean Engineering, 2022, 244: 110192. doi: 10.1016/j.oceaneng.2021.110192
    [13] LIU H L, HUANG T T. Summary of DARPA suboff experimental program data[R]. West Bethesda: Naval Surface Warfare Center, Carderock Division, 1998.
    [14] 杨敬东, 赵登, 彭伟, 等. 基于CFD的游艇阻力预报及球鼻艏型线变形[J]. 重庆交通大学学报(自然科学版), 2023, 42(2): 144-148.

    YANG J D, ZHAO D, PENG W, et al. Yacht resistance prediction and bulbous bow profile deformation based on CFD[J]. Journal of Chongqing Jiaotong University(Natural Science Edition), 2023, 42(2): 144-148.
    [15] 刘悦. 基于智能优化方法船舶阻力性能优化设计研究[D]. 大连: 大连理工大学, 2021.
    [16] 陈骏喆, 姜栋, 张儒, 等. 小样本规模船型优化策略的选择研究[J]. 中国造船, 2023, 64(4): 248-257. doi: 10.3969/j.issn.1000-4882.2023.04.023

    CHEN J Z, JIANG D, ZHANG R, et al. Study on the selection of ship form optimization strategy with small sample size[J]. Shipbuilding in China, 2023, 64(4): 248-257. doi: 10.3969/j.issn.1000-4882.2023.04.023
    [17] 孙海莎. 基于CFD的散货船首部型线优化[D]. 武汉: 华中科技大学, 2022.
    [18] PRAKS P, BRKIC D. Approximate flow friction factor: Estimation of the accuracy using Sobol’s Quasi-Random sampling[J]. Axioms, 2022, 11(2): 36. doi: 10.3390/axioms11020036
    [19] ZHENG W, DOERR B. Mathematical runtime analysis for the non-dominated sorting genetic algorithm II(NSGA-II)[J]. Artificial Intelligence, 2023, 325: 104016. doi: 10.1016/j.artint.2023.104016
    [20] 张帅. 长航程水下滑翔机的减阻技术研究[D]. 天津: 天津大学, 2018.
    [21] ŞUMNU A. Passive flow control of Ahmed body using control rod[J]. International Journal of Automotive and Mechanical Engineering, 2022, 19(4): 10063-10072. doi: 10.15282/ijame.19.4.2022.03.0777
    [22] XIE Z, LIU Y, WANG S, et al. Bio-inspired profile improving the flow near the stern of an underwater vehicle[J]. Ocean Engineering, 2024, 314: 119693. doi: 10.1016/j.oceaneng.2024.119693
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  15
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-15
  • 修回日期:  2025-02-27
  • 录用日期:  2025-03-04
  • 网络出版日期:  2025-07-01

目录

    /

    返回文章
    返回
    服务号
    订阅号