• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于样条插值的轻量化AIS船舶轨迹预测

胡建涛 李天姣 刘辉 李舒心 程徐

胡建涛, 李天姣, 刘辉, 等. 基于样条插值的轻量化AIS船舶轨迹预测[J]. 水下无人系统学报, 2025, 33(2): 350-358 doi: 10.11993/j.issn.2096-3920.2024-0164
引用本文: 胡建涛, 李天姣, 刘辉, 等. 基于样条插值的轻量化AIS船舶轨迹预测[J]. 水下无人系统学报, 2025, 33(2): 350-358 doi: 10.11993/j.issn.2096-3920.2024-0164
HU Jiantao, LI Tianjiao, LIU Hui, LI Shuxin, CHENG Xu. Prediction of Lightweight AIS-Based Ship Trajectories with Spline Interpolation[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 350-358. doi: 10.11993/j.issn.2096-3920.2024-0164
Citation: HU Jiantao, LI Tianjiao, LIU Hui, LI Shuxin, CHENG Xu. Prediction of Lightweight AIS-Based Ship Trajectories with Spline Interpolation[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 350-358. doi: 10.11993/j.issn.2096-3920.2024-0164

基于样条插值的轻量化AIS船舶轨迹预测

doi: 10.11993/j.issn.2096-3920.2024-0164
基金项目: 国家自然科学基金优秀青年基金(T2422015); 国家自然科学基金青年基金(62306212); 国家自然科学基金重点国际(地区)合作研究项目(2020106004).
详细信息
    通讯作者:

    李天姣(1994-), 女, 博士, 讲师, 主要研究方向为水下导航及组合导航.

  • 中图分类号: TJ630.33; U675.79

Prediction of Lightweight AIS-Based Ship Trajectories with Spline Interpolation

  • 摘要: 船舶自动识别系统(AIS)能够提供大量实时船舶航行数据, 已成为海上交通管理、搜救行动和风险评估等诸多领域不可或缺的关键数据来源。其中船舶轨迹预测问题受到广泛关注。然而, 实现精准的长时间轨迹预测面临两大问题: 一是AIS数据本身的完整性问题; 二是预测模型的效率问题。因此, 如何有效地处理AIS数据缺失以及如何构建轻量且高效的预测模型,成为了亟待解决的重要问题。文中提出了一种基于样条插值的轻量化AIS船舶轨迹预测方法, 采用样条插值来填补缺失的AIS数据, 并引入了一种轻量化的线性层结构以降低深度学习模型的复杂度。实验结果表明, 该方法能够有效插值缺失的AIS数据, 显著减少深度学习模型的参数量和计算量, 进而提升对船舶轨迹的预测精度。

     

  • 图  1  基于样条插值的轻量化AIS船舶轨迹预测模型

    Figure  1.  Lightweight AIS ship trajectory prediction model based on spline interpolation

    图  2  低秩线性层

    Figure  2.  Low-Rank Linear layer

    图  3  30%缺失率下的AIS数据插值

    Figure  3.  Interpolation of AIS data at 30% missing rate

    图  4  trAISformer模型结构图以及参数

    Figure  4.  Structure diagram and parameters of trAISformer model

    图  5  trAISformer模型轻量化前后参数量和计算量对比

    Figure  5.  Comparison of parameters and calculation of trAISformer model before and after lightweight

    图  6  30%缺失率下的AIS轨迹预测效果对比

    Figure  6.  Comparison of AIS trajectory prediction effectiveness at 30% missing rate

    表  1  不同AIS缺失率下各类插值方法平均绝对误差和均方根误差结果

    Table  1.   Mean absolute error and root mean square error results of various interpolation methods under different AIS deletion rates

    插值
    方法
    平均绝对误差/m 均方根误差/m
    10% 20% 30% 10% 20% 30%
    样条
    插值
    124.31 144.89 181.10 220.30 256.83 337.21
    KNN 1 217.81 1 443.74 1 728.32 1 435.59 1 443.74 2 198.57
    VAE 5 929.95 3 574.67 2 266.12 104 563.78 135 865.43 4 140.36
    下载: 导出CSV

    表  2  模型轻量化前后性能对比

    Table  2.   Comparison of model performance before and after lightweighting

    预测模型 平均预测误差/km 训练时间/s 评估时间/s
    1 h 2 h 3 h
    trAISformer 0.9147 1.7800 2.9592 882.4580 102.7633
    改进的
    trAISformer
    0.7875 1.5427 2.6187 648.2574 91.6179
    下载: 导出CSV

    表  3  不同AIS缺失率下各插值方法的轨迹预测误差对比

    Table  3.   Comparison of trajectory prediction errors of each interpolation method under different AIS deletion rates

    数据缺失率/% 预测模型 平均预测误差/km
    1 h 2 h 3 h
    10 trAISformer 1.498 2 2.622 2 3.869 2
    改进的trAISformer 0.787 5 1.542 7 2.618 7
    20 trAISformer 1.905 3 3.264 4 5.115 9
    改进的trAISformer 0.829 2 1.586 8 2.702 7
    30 trAISformer 2.606 1 4.506 1 6.847 1
    改进的trAISformer 0.828 0 1.634 8 2.666 7
    下载: 导出CSV

    表  4  基于消融方法评估10%缺失率下船舶轨迹预测模型的预测误差

    Table  4.   An ablation-based approach to evaluate the prediction error of ship trajectory prediction model at 10% missing rate

    预测模型 平均预测误差/km
    1 h 2 h 3 h
    缺乏样条插值以及
    轻量化方法
    1.498 2 2.622 2 3.869 2
    缺乏样条插值 1.359 4 2.361 0 3.595 0
    缺乏轻量化方法 0.855 0 1.681 4 2.716 3
    改进的trAISformer 0.787 5 1.542 7 2.618 7
    下载: 导出CSV
  • [1] 田延飞, 乔慧, 滑林, 等. 海上船舶碰撞贝叶斯网络模型及其应用[J]. 海军工程大学学报, 2023, 35(6): 28-33. doi: 10.7495/j.issn.1009-3486.2023.06.006

    TIAN Y F, QIAO H, HUA L, et al. Bayesian network model for ship collisions at sea and its applications[J]. Journal of Naval University of Engineering, 2023, 35(6): 28-33. doi: 10.7495/j.issn.1009-3486.2023.06.006
    [2] LIANG M H, SU J L, LIU R W, et al. AISClean: AIS data-driven vessel trajectory reconstruction under uncertain conditions[J]. Ocean Engineering, 2024, 306: 117987. doi: 10.1016/j.oceaneng.2024.117987
    [3] 张莉莉. 舰船交通管理系统信息融合系统中的云计算应用[J]. 舰船科学技术, 2018, 40(4): 43-45. doi: 10.3404/j.issn.1672-7649.2018.04.009

    ZHANG L L. The application of cloud computing system information fusion ship traffic management system[J]. Ship Science and Technology, 2018, 40(4): 43-45. doi: 10.3404/j.issn.1672-7649.2018.04.009
    [4] ZHANG X Y, WANG C B, JIANG L L, et al. Collision-avoidance navigation systems for maritime autonomous surface ships: A state of the art survey[J]. Ocean Engineering, 2021, 235(1): 109380.
    [5] VARLAMIS I, TSERPES K, SARDIANOS C. Detecting search and rescue missions from AIS data[C]//2018 IEEE 34th International Conference on Data Engineering Workshops(ICDEW). San Francisco, California, USA: IEEE, 2018: 60-65.
    [6] DANG X K, TRUONG H N, DO V D. A path planning control for a vessel dynamic positioning system based on robust adaptive fuzzy strategy[J]. Automatika, 2022, 63(3): 580-592. doi: 10.1080/00051144.2022.2056289
    [7] FORTI N, MILLEFIORI L M, BRACA P, et al. Prediction of vessel trajectories from AIS data via sequence-to-sequence recurrent neural networks[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Barcelona, Spain: IEEE, 2020: 8936-8940.
    [8] GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 1243-1252.
    [9] CAPOBIANCO S, MILLEFIORI L M, FORTI N, et al. Deep learning methods for vessel trajectory prediction based on recurrent neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4329-4346. doi: 10.1109/TAES.2021.3096873
    [10] NGUYEN D, FABLET R. A transformer network with sparse augmented data representation and cross entropy loss for AIS-based vessel trajectory prediction[J]. IEEE Access, 2024, 12: 21596-21609. doi: 10.1109/ACCESS.2024.3349957
    [11] 刘博翀, 蔡怀宇, 杨诗远, 等. 一种用于自动驾驶场景的轻量级语义分割网络[J]. 西安电子科技大学学报, 2023, 50(1): 118-128.

    LIU B C, CAI H Y, YANG S Y, et al. Lightweight semantic segmentation network for autonomous driving scenarios[J]. Journal of Xidian University, 2023, 50(1): 118-128.
    [12] 何戚天, 李为相, 程明, 等. 面向航拍图像的轻量化目标检测算法[J]. 电光与控制, 2025, 32(3): 56-61, 81.

    HE Q T, LI W X, CHENG M, et al. Lightweight target detection algorithm for aerial images[J]. Electronics Optics & Control, 2025, 32(3): 56-61, 81.
    [13] WANG W, CHEN Y, LIN M. MFLD: Lightweight object detection with multi-receptive field and long-range dependency in remote sensing images[J]. International Journal of Intelligent Computing and Cybernetics, 2024, 17(4): 805-823. doi: 10.1108/IJICC-01-2024-0020
    [14] 汪玉秀, 苏战波. 基于轻量化神经网络的多语音识别方法研究[J]. 自动化与仪器仪表, 2023(10): 167-169, 174.

    WANG Y X, SU Z B. Research on multi-speech recognition method based on lightweight network[J]. Automation and Instrumentation, 2023(10): 167-169, 174.
    [15] 周子垚, 刘庆玲, 陶剑英, 等. 智能6G: 网络的边缘部署和轻量化[J]. 移动通信, 2023, 47(2): 2-7.

    ZHOU Z Y, LIU Q L, TAO J Y, et al. Smart 6G: Edge deployment and lightweight networks[J]. Mobile Communications, 2023, 47(2): 2-7.
    [16] YAN R, MO H, YANG D, et al. Development of denoising and compression algorithms for AIS-based vessel trajectories[J]. Ocean Engineering, 2022, 252: 111207. doi: 10.1016/j.oceaneng.2022.111207
    [17] 贺健平, 林永君, 孙孟超, 等. 考虑数据缺失的短期光伏功率预测模型[J]. 电力科学与工程, 2024, 40(11): 35-44. doi: 10.3969/j.ISSN.1672-0792.2024.11.004

    HE J P, LIN Y J, SUN M C, et al. Short-term photovoltaic power prediction model considering data missing[J]. Electric Power Science and Engineering, 2024, 40(11): 35-44. doi: 10.3969/j.ISSN.1672-0792.2024.11.004
    [18] LIU C, CHEN X. Vessel track recovery with incomplete AIS data using tensor CANDECOM/PARAFAC decomposition[J]. The Journal of Navigation, 2014, 67(1): 83-99. doi: 10.1017/S0373463313000398
    [19] GUO S, MOU J, CHEN L, et al. Improved kinematic interpolation for AIS trajectory reconstruction[J]. Ocean Engineering, 2021, 234: 109256. doi: 10.1016/j.oceaneng.2021.109256
    [20] KONTOPOULOS I, VARLAMIS I, TSERPES K. A distributed framework for extracting maritime traffic patterns[J]. International Journal of Geographical Information Science, 2021, 35(4): 767-792. doi: 10.1080/13658816.2020.1792914
    [21] ZHANG D, LI J, WU Q, et al. Enhance the AIS data availability by screening and interpolation[C]//2017 4th International Conference on Transportation Information and Safety(ICTIS). Wuhan, China: IEEE, 2017: 981-986.
    [22] LIU Y, FU R, PENG X, et al. AIS trajectory classification via improved IMM approach[C]//2024 43rd Chinese Control Conference(CCC). Kunming, China: IEEE, 2024: 3441-3445.
    [23] ANDREW G, MENGLONG Z. Efficient convolutional neural networks for mobile vision applications[J]. MobileNets, 2017, 10: 151.
    [24] LI C, SHI C J. Constrained optimization based low-rank approximation of deep neural networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 732-747.
    [25] SWAMINATHAN S, GARG D, KANNAN R, et al. Sparse low rank factorization for deep neural network compression[J]. Neurocomputing, 2020, 398(7): 185-196.
    [26] MCKINLEY S, LEVINE M. Cubic spline interpolation[J]. College of the Redwoods, 1998, 45(1): 1049-1060.
    [27] 张颖, 杨廷尧. 基于样条插值的水沙通量时间序列预测算法[J]. 现代信息科技, 2024, 8(20): 145-148.

    ZHANG Y, YANG T Y. Time series prediction algorithm of water and sediment flux based on spline interpolation[J]. Modern Information Technology, 2024, 8(20): 145-148.
    [28] LIU H, JIA C, SHI F, et al. Staircase cascaded fusion of lightweight local pattern recognition and long-range dependencies for structural crack segmentation[J]. Automation in Construction. 2024, 154: 104459.
    [29] CHOPDE N R, NICHAT M. Landmark based shortest path detection by using A* and haversine formula[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2013, 1(2): 298-302.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  52
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 修回日期:  2025-01-24
  • 录用日期:  2025-02-12
  • 网络出版日期:  2025-03-18

目录

    /

    返回文章
    返回
    服务号
    订阅号