• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合深度学习和领域知识的水声快变信道均衡技术

邓珂 王帅军 余华 张健 陈军帆 吴州平

邓珂, 王帅军, 余华, 等. 结合深度学习和领域知识的水声快变信道均衡技术[J]. 水下无人系统学报, 2025, 33(2): 1-8 doi: 10.11993/j.issn.2096-3920.2024-0163
引用本文: 邓珂, 王帅军, 余华, 等. 结合深度学习和领域知识的水声快变信道均衡技术[J]. 水下无人系统学报, 2025, 33(2): 1-8 doi: 10.11993/j.issn.2096-3920.2024-0163
DENG Ke, WANG Shuaijun, YU Hua, ZHANG Jian, CHEN Junfan, WU Zhouping. Underwater Acoustic Rapidly Time-Varying Channel Equalization Technique Integrating Deep Learning and Domain Knowledge[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0163
Citation: DENG Ke, WANG Shuaijun, YU Hua, ZHANG Jian, CHEN Junfan, WU Zhouping. Underwater Acoustic Rapidly Time-Varying Channel Equalization Technique Integrating Deep Learning and Domain Knowledge[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0163

结合深度学习和领域知识的水声快变信道均衡技术

doi: 10.11993/j.issn.2096-3920.2024-0163
基金项目: 国家自然科学基金项目资助(62192712).
详细信息
    作者简介:

    邓珂:邓 珂(1980-), 男, 硕士, 工程师, 主要研究方向为水声通信、跨域无人集群通信组网、空天地海一体化通信网络

    通讯作者:

    王帅军(1992-), 男, 博士, 工程师, 主要研究方向为水声通信、跨介质通信、空海跨域通信组网.

  • 中图分类号: TJ631.32; U674.95

Underwater Acoustic Rapidly Time-Varying Channel Equalization Technique Integrating Deep Learning and Domain Knowledge

  • 摘要: 以OFDM为代表的多载波通信是目前水声高谱效传输的主流体制, 可有效应对水声多路径传播带来的频率选择性衰落问题, 然而在快时变场景下的子载波间干扰(ICI)会严重影响传输可靠性。针对水声快变信道下的时间-频率双选择性衰落问题, 为了降低OFDM系统的接收误码率, 提出一种结合深度学习和领域知识的水声快变信道均衡方法, 不同于将传统信道估计和均衡检测结果作为深度神经网络(DNN)的预处理结果或者补充信息源, 文中使用经典频域均衡模型的结构化信息辅助DNN模型训练和推理, 以抵抗ICI的不利影响, 并适应实际部署信道环境与训练信道环境失配的场景。仿真和海上测试结果表明所提出方法能够有效降低接收机误码率, 能够实现更快的模型收敛速度, 并在未知信道条件下具有实现更强泛化性能的潜力。

     

  • 图  1  ICI感知均衡网络

    Figure  1.  ICI-aware equalization network (ICI-EqNet)

    图  2  ICI-EqNet在OFDM接收机中的部署位置

    Figure  2.  The deployment position of ICI-EqNet in OFDM receivers

    图  3  训练过程中损失函数比较

    Figure  3.  Comparison of loss functions during training

    图  4  误码率性能比较

    Figure  4.  Comparison of BER Performance

    图  5  带状矩阵总带宽的影响

    Figure  5.  The impact of total width of the band matrix

    图  6  惠州海试水声通信设备

    Figure  6.  The UWA communication equipment used in the Huizhou sea trial

    图  7  海试中收发端相距约4 600 m时的定位信息

    Figure  7.  The positioning information when the transmitter and receiver were approximately 4 600 meters apart during the sea trial

    图  8  海试发送波形和时-频特性

    Figure  8.  Transmitted waveforms and time-frequency characteristics from the sea trial

    表  1  ICI-EqNet参数列表

    Table  1.   Parameters of ICI-EqNet

    层标识节点数激活函数
    输入层$ 2\tilde N $
    密集层#1$ 2\tilde N $ReLU
    密集层#2$ \tilde N $ReLU
    密集层#3$ 2\dot NQ $Linear
    确定性转换层$ 2\dot N $
    密集层#4$ 2\dot N $tanh
    输出层$ 2{\dot N_D} $tanh
    下载: 导出CSV

    表  2  波形参数设计

    Table  2.   Waveform Parameter Design

    参数标识大小
    中心频率/kHz$ {f_c} $11
    占用带宽/kHzB8
    IFFT/FFT长度N1 024
    活跃子载波数目$ \dot N $512
    导频子载波数目$ {\dot N_P} $128
    数目子载波数目$ {\dot N_D} $384
    基带采样周期/ms$ \Delta T = \dot N/(NB) $0.062 5
    子载波间隔/Hz$ \Delta f = B/\dot N $15.625
    基本符号周期/ms$ T = N\Delta T $64
    保护间隔长度/ms$ {T_{ZP}} $16
    完整符号周期/ms$ {T_s} = T + {T_{ZP}} $80
    下载: 导出CSV

    表  3  海试误码率比较

    Table  3.   Comparison of BER in the sea trial

    收发
    距离/m
    总帧数 LS
    误码率/%
    LMMSE
    误码率/%
    Data-DrNet
    误码率/%
    ICI-EqNet
    误码率/%
    590 503 0.170 0.059 0.093 0.052
    1 700 506 1.248 0.634 0.194 0.093
    4 600 502 6.129 5.202 0.913 0.130
    下载: 导出CSV
  • [1] LI B, ZHOU S, STOJANOVIC M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198-209. doi: 10.1109/JOE.2008.920471
    [2] BERGER C R, ZHOU S, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708-21. doi: 10.1109/TSP.2009.2038424
    [3] YU H, SONG A, BADIEY M, et al. Iterative estimation of doubly selective underwater acoustic channel using basis expansion models[J]. Ad Hoc Networks, 2015, 34(11): 52-61.
    [4] WANG S, LIU M, LI D. Bayesian learning-based clustered-sparse channel estimation for time-varying underwater acoustic OFDM communication[J]. Sensors, 2021, 21(14): 4889. doi: 10.3390/s21144889
    [5] KANNU A P, SCHNITER P. Design and analysis of MMSE pilot-aided cyclic-prefixed block transmissions for doubly selective channels[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1148-1160. doi: 10.1109/TSP.2007.908969
    [6] KALTENBERGER F, ZEMEN T, UEBERHUBER C W. Low-complexity doubly selective channel simulation using multidimensional discrete prolate spheroidal sequences[EB/OL]. [2024-12-13]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=764a2987979e1c69ff36f33bdf818c3763d4d5dc.
    [7] NEUMANN D, WIESE T, UTSCHICK W. Learning the MMSE channel estimator[J]. IEEE Transactions on Signal Processing, 2018, 66(11): 2905-2917. doi: 10.1109/TSP.2018.2799164
    [8] YE H, LI G Y, JUANG B H F. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communication Letters, 2017, 16(99): 114-117.
    [9] JIANG R, WANG X, CAO S, et al. Deep neural networks for channel estimation in underwater acoustic OFDM systems[J]. IEEE Access, 2019, 7(7): 23579-94.
    [10] ZHANG Y, LI J, ZAKHAROV Y, et al. Deep learning based underwater acoustic OFDM communications[J]. Applied Acoustics, 2019, 154(11): 53-58.
    [11] 赵昊. 基于深度学习的水声通信物理层技术研究[D]. 广州: 华南理工大学, 2023.
    [12] 张永霖, 王海斌, 李超, 等. 水声通信中的信道估计与机器学习交叉研究进展[J]. 声学技术, 2022, 41(3): 334-345. doi: 10.3969/j.issn.1000-3630.2022.3.sxjs202203005

    ZHANG Y L, WANG H B, LI C, et al. Advances in the intersection of channel estimation and machine learning in underwater acoustic communications[J]. Technical Acoustics, 2022, 41(3): 334-345. doi: 10.3969/j.issn.1000-3630.2022.3.sxjs202203005
    [13] Chen Y, Qiao P, Ren X, et al. OFDM underwater acoustic communication receiver based on deep learning [C]//OCEANS. Singapore: IEEE, 2024.
    [14] Shlezinger N, Whang J, Eldar Y C, et al. Model-based deep learning: Key approaches and design guidelines[C]//IEEE Data Science and Learning Workshop (DSLW). Toronto, Canada: IEEE, 2021.
    [15] XU Z B, SUN J. Model-driven deep-learning[J]. National Science Review, 2018, 5(1): 22-24. doi: 10.1093/nsr/nwx099
    [16] Lin X, Shen Y, C. Jiang. A Model-driven deep learning-based receiver for OFDM system with carrier frequency offset[J]. IEEE Communications Letters, 2024, 28(4): 813-817. doi: 10.1109/LCOMM.2024.3354990
    [17] FENG X, ZHOU M, WANG J, SUN H, et al. Model-driven deep learning-based estimation for underwater acoustic channels with uncertain sparsity[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 5710-25. doi: 10.1109/TWC.2023.3327995
    [18] GAO X, JIN S, WEN C K, et al. ComNet: Combination of deep learning and expert knowledge in OFDM receivers[J]. IEEE Communications Letters, 2018, 22(12): 2627-30. doi: 10.1109/LCOMM.2018.2877965
    [19] RU X, WEI L, XU Y. Model-driven channel estimation for OFDM systems based on image super-resolution network[C]//2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). Nanjing, China: IEEE, 2020.
    [20] ZHAO H, JI F, WEN M, et al. Multi-task learning based underwater acoustic OFDM communications[C]//2021 IEEE International Conference on Signal Processing, Communications and Computing. Xi’an, China: IEEE, 2021.
    [21] MUQUET B, WANG Z, GIANNAKIS G B, et al. Cyclic prefixing or zero padding for wireless multicarrier transmissions?[J]. IEEE Transactions on Communications, 2002, 50(12): 2136-48. doi: 10.1109/TCOMM.2002.806518
    [22] GOLUB G H , VAN LOAN C F. Matrix Computations [M]. 4th ed. Baltimore, MD: Johns Hopkins University Press, 2013.
    [23] HLAWATSCH F, MATZ G. Wireless communications over rapidly time-varying channels[M]. New York: Academic Press, 2011.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  11
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 修回日期:  2025-02-06
  • 录用日期:  2025-02-17
  • 网络出版日期:  2025-03-10

目录

    /

    返回文章
    返回
    服务号
    订阅号