• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海特种耐压结构水面-水下复杂工况试验方法

陈沙古 高原 吴智睿 王琨 周成

陈沙古, 高原, 吴智睿, 等. 深海特种耐压结构水面-水下复杂工况试验方法[J]. 水下无人系统学报, 2025, 33(4): 691-698 doi: 10.11993/j.issn.2096-3920.2024-0153
引用本文: 陈沙古, 高原, 吴智睿, 等. 深海特种耐压结构水面-水下复杂工况试验方法[J]. 水下无人系统学报, 2025, 33(4): 691-698 doi: 10.11993/j.issn.2096-3920.2024-0153
CHEN Shagu, GAO Yuan, WU Zhirui, WANG Kun, ZHOU Cheng. Test Method for Complex Surface-Underwater Conditions of Deep-Sea Special Pressure Structure[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 691-698. doi: 10.11993/j.issn.2096-3920.2024-0153
Citation: CHEN Shagu, GAO Yuan, WU Zhirui, WANG Kun, ZHOU Cheng. Test Method for Complex Surface-Underwater Conditions of Deep-Sea Special Pressure Structure[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 691-698. doi: 10.11993/j.issn.2096-3920.2024-0153

深海特种耐压结构水面-水下复杂工况试验方法

doi: 10.11993/j.issn.2096-3920.2024-0153
详细信息
    作者简介:

    陈沙古(1984-), 男, 高级工程师, 主要研究方向为深海装备耐压结构设计与评估技术

  • 中图分类号: TJ630; U661

Test Method for Complex Surface-Underwater Conditions of Deep-Sea Special Pressure Structure

  • 摘要: 分离头盖是深海无人系统的特种耐压结构, 需兼顾水下长期耐压与水面快速分离功能。为研究深海特种耐压结构水面-水下复杂工况综合性能, 研制了分离头盖实尺度结构模型开展水压试验和分离试验研究。首先, 针对分离头盖水下服役时面临的长周期海水压力环境试验工况需求, 基于国内现有的常规深海环境模拟试验系统, 提出了一种通过带皮囊球的舱室装置来实现大深度海水-压力耦合环境模拟的试验方法。再者, 针对分离头盖出水后的水面状态(空气中)快速分离试验工况需求, 建立了一套安全可靠的斜法兰连接结构模型快速分离试验系统。分离头盖实尺度模型试验结果表明, 文中提出的特种耐压结构水面-水下复杂工况试验方法合理可行, 不仅可用于分离头盖的水压试验和分离试验研究, 也可为其他深海装备类似耐压结构的相关设计与试验提供参考。

     

  • 图  1  分离头盖结构简图

    Figure  1.  Schematic diagram of the separable head cover

    图  2  深海环境模拟试验装置组成简图

    Figure  2.  Composition of the deep-sea environment simulation test device

    图  3  海水舱结构简图

    Figure  3.  Schematic diagram of seawater tank

    图  4  海水压力环境模拟试验原理图

    Figure  4.  Schematic diagram of seawater pressure environment simulation test

    图  5  高压试验应变片防水密封方法

    Figure  5.  Waterproof sealing method for strain gauges in high pressure test

    图  6  分离试验系统原理图

    Figure  6.  Schematic diagram of separation test system

    图  7  分离试验逐项验证

    Figure  7.  Verification of separation test item by item

    图  8  分离头盖实尺度结构模型

    Figure  8.  Full-scale structure model of the separable head cover

    图  9  实尺度模型海水-压力耦合环境外压试验情况

    Figure  9.  Full-scale model pressure test in simulated seawater-pressure coupling environment

    图  10  爆炸螺栓性能测试

    Figure  10.  Performance test of explosion bolt

    图  11  作动器性能测试

    Figure  11.  Performance test of the actuator

    图  12  模型分离过程情况

    Figure  12.  Separation process of full-scale model

  • [1] ZHANG E, ZHU X L, JING T, et al. Research status and development trend of pressure resistant structure of deep submersibles[J]. Journal of Ship Mechanics, 2021, 25(10): 1427-1437.
    [2] 石学法, 符亚洲, 李兵. 我国深海矿产研究: 进展与发现(2011—2020年)[J]. 矿物岩石地球化学通报, 2021, 40(22): 1-14.

    SHI X F, FU Y Z, LI B. Research on deep-sea minerals in China: Progress and discovery(2011—2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(22): 1-14.
    [3] 黄牧, 石学法, 毕东杰. 深海稀土资源勘查开发研究进展[J]. 中国有色金属学报, 2021, 31(10): 2665-2681.

    HUANG M, SHI X F, BI D J. Advances on study of exploration and development of deep-sea rare earth resources[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2665-2681.
    [4] MUTTAQIE T, PARK S H, CHO S R, et al. Optimisation of the design of a steel-welded pressure hull structure based on interactive nonlinear collapse strength analyses[J]. Ships and Off-shore Structures, 2022, 17(1/3): 76-91.
    [5] WANG F, HU Y, CUI W C, et al. Preliminary evaluation of maraging steels on its application to full ocean depth manned cabin[J]. Journal of Ship Mechanics, 2016, 20(12): 1557-1572.
    [6] 曹俊, 胡震, 刘涛. 深海潜水器装备体系现状及发展分析[J]. 中国造船, 2020, 61(1): 204-218. doi: 10.3969/j.issn.1000-4882.2020.01.021

    CAO J, HU Z, LIU T. Current situation and development of deep-sea submersible equipment[J]. Ship Building of China, 2020, 61(1): 204-218. doi: 10.3969/j.issn.1000-4882.2020.01.021
    [7] AMAZIGO J C, FRASER W B. Buckling under external pressure of cylindrical shells with dimple shaped initial imperfections[J]. International Journal of Solids & Structures, 1971, 7(8): 883-900.
    [8] 李智生, 张强. 深海预置武器系统发展现状及关键技术[J]. 舰船电子工程, 2020, 308(2): 1-4. doi: 10.3969/j.issn.1672-9730.2020.02.001

    LI Z S, ZHANG Q. Development situation and key technologies of deep sea laying weapon[J]. Ship Electronic Engineering, 2020, 308(2): 1-4. doi: 10.3969/j.issn.1672-9730.2020.02.001
    [9] 陈沙古, 高原, 吴智睿. 深海无人系统大长径比环肋圆柱壳结构设计与试验研究[J]. 海洋工程, 2024, 42(1): 115-123.

    CHEN S G, GAO Y, WU Z R. Study on design and experimental of ring-stiffened cylindrical shell with large length-diameter ratio for unmanned deep-sea systems[J]. The Ocean Engineering, 2024, 42(1): 115-123.
    [10] 李文跃, 王帅, 刘涛. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210-221. doi: 10.3969/j.issn.1000-4882.2016.01.023

    LI W Y, WANG S, LIU T. Current status and progress on pressure hull structure of manned deep submersible[J]. Shipbuilding of China, 2016, 57(1): 210-221. doi: 10.3969/j.issn.1000-4882.2016.01.023
    [11] 谢锡南, 潘森涛, 沈永新. 水下耐压结构外压疲劳试验系统研制[J]. 船舶力学, 2000, 4(2): 44-50.

    XIE X N, PAN S T, SHEN Y X. Development of experimental system for external pressure fatigue tests of underwater pressure structures[J]. Journal of Ship Mechanics, 2000, 4(2): 44-50.
    [12] 张强, 张雷励, 张铭钧. 深海环境模拟实验装置及压力动态控制技术[J]. 哈尔滨工程大学学报, 2016, 37(11): 1565-1572. doi: 10.11990/jheu.201510044

    ZHANG Q, ZHANG L L, ZHANG M J. Experiment devices for simulating a deep-sea environment and dynamic pressure control technology[J]. Journal of Harbin Engineering University, 2016, 37(11): 1565-1572. doi: 10.11990/jheu.201510044
    [13] 杨伟华. 深海耐压结构健康监测与在线评估技术研究[D]. 无锡: 中国船舶科学研究中心, 2018.
    [14] 刘淮. 国外深海技术发展研究[J]. 船艇, 2006(10): 6-22.

    LIU H. Reseach on development of overseas deep ocean technologies[J]. Ships & Yachts, 2006(10): 6-22.
    [15] 张帅, 杨敏, 吴静. 深水环境试验技术综述[J]. 装备环境工程, 2021, 18(5): 41-48.

    ZHANG S, YANG M, WU J. Review of the test technology for deep sea environment[J]. Equipment Environmental Engineering, 2021, 18(5): 41-48.
    [16] 张海龙, 钟国睿, 朱志伟. 深海装备的静水压力试验技术[J]. 船舶与海洋工程, 2019, 35(5): 14-19.

    ZHANG H L, ZHONG G R, ZHU Z W. Hydrostatic pressure test technology for deep-sea equipment[J]. Naval Architecture and Ocean Engineering, 2019, 35(5): 14-19.
    [17] 张倩瑜, 孙晓宁, 李昕. 高压水下应变测量方案研究[J]. 天津化工, 2013, 26(6): 33-35. doi: 10.3969/j.issn.1008-1267.2013.06.012

    ZHANG Q Y, SUN X N, LI X. Research of strain measurement with high-pressure underwater[J]. Tianjin Chemical Industry, 2013, 26(6): 33-35. doi: 10.3969/j.issn.1008-1267.2013.06.012
    [18] 李盼菲. 电阻应变测量中提高精度的方法研究[J]. 计量与测试技术, 2019, 46(12): 62-64.

    LI P F. Research on method of improving accuracy in resistance strain measurement technique[J]. Metrology & Measurement Technique, 2019, 46(12): 62-64.
    [19] 黄进浩, 邱昌贤, 张平平. 高压深海压力环境模拟装置耐压试验技术研究[C]//中国造船工程学会船舶力学学术委员会第八次全体会议论文集. 大连, 中国: 中国造船工程学会船舶力学学术委员会, 2014: 209-217.
    [20] 陈沙古, 吴智睿, 高原. 基于三维应力方法的中厚壳耐压结构强度研究[J]. 船舶力学, 2024, 28(11): 1731-1741. doi: 10.3969/j.issn.1007-7294.2024.11.010

    CHEN S G, WU Z R, GAO Y. Structural strength of medium-thick shell based on three dimensional stress analysis method[J]. Journal of Ship Mechanics, 2024, 28(11): 1731-1741. doi: 10.3969/j.issn.1007-7294.2024.11.010
  • 加载中
图(12)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  49
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-08
  • 修回日期:  2025-01-01
  • 录用日期:  2025-02-08
  • 网络出版日期:  2025-03-11

目录

    /

    返回文章
    返回
    服务号
    订阅号